scholarly journals Multimessengers from Core-Collapse Supernovae: Multidimensionality as a Key to Bridge Theory and Observation

2012 ◽  
Vol 2012 ◽  
pp. 1-46 ◽  
Author(s):  
Kei Kotake ◽  
Tomoya Takiwaki ◽  
Yudai Suwa ◽  
Wakana Iwakami Nakano ◽  
Shio Kawagoe ◽  
...  

Core-collapse supernovae are dramatic explosions marking the catastrophic end of massive stars. The only means to get direct information about the supernova engine is from observations of neutrinos emitted by the forming neutron star, and through gravitational waves which are produced when the hydrodynamic flow or the neutrino flux is not perfectly spherically symmetric. The multidimensionality of the supernova engine, which breaks the sphericity of the central core such as convection, rotation, magnetic fields, and hydrodynamic instabilities of the supernova shock, is attracting great attention as the most important ingredient to understand the long-veiled explosion mechanism. Based on our recent work, we summarize properties of gravitational waves, neutrinos, and explosive nucleosynthesis obtained in a series of our multidimensional hydrodynamic simulations and discuss how the mystery of the central engines can be unraveled by deciphering these multimessengers produced under the thick veils of massive stars.

2011 ◽  
Vol 7 (S279) ◽  
pp. 134-137
Author(s):  
Thierry Foglizzo ◽  
Frédéric Masset ◽  
Jérôme Guilet ◽  
Gilles Durand

AbstractMassive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.


2017 ◽  
Vol 14 (S339) ◽  
pp. 33-38
Author(s):  
S. Justham

AbstractExplosive stellar transients arise from diverse situations, including deaths of massive stars, a variety of thermonuclear outbursts, and compact-object mergers. Stellar interactions are heavily implicated in explaining the observed populations of events, and not only those where binarity is obviously involved. Relationships between these classes probably help to elucidate our understanding; for example; the production of double neutron-star mergers from field binaries is thought to be heavily biased towards routes involving stripped core-collapse supernovæ. As we gain an ever more synoptic view of the changing sky, theorists should be mindful of developing an ability to take robust quantitative advantage of the available population information to help constrain the physics. This is complementary to aiming for deep understanding of individual events.


2017 ◽  
Vol 229 (2) ◽  
pp. 42 ◽  
Author(s):  
Hiroki Nagakura ◽  
Wakana Iwakami ◽  
Shun Furusawa ◽  
Kohsuke Sumiyoshi ◽  
Shoichi Yamada ◽  
...  

2005 ◽  
Vol 192 ◽  
pp. 403-410 ◽  
Author(s):  
P. Höflich ◽  
D. Baade ◽  
A. Khokhlov ◽  
L. Wang ◽  
J.C. Wheeler

SummaryWe discuss the possible connection between supernova explosions (SN) and gamma-ray bursters (GRB) from the perspective of our current understanding of SN physics. Core collapse supernovae (SN) are the final stages of stellar evolution in massive stars during which the central region collapses, forms a neutron star (NS) or black hole, and the outer layers are ejected. Recent explosion scenarios assumed that the ejection is due to energy deposition by neutrinos into the envelope but detailed models do not produce powerful explosions. There is new and mounting evidence for an asphericity and, in particular, for axial symmetry in several supernovae which may be hard to reconcile within the spherical picture. The 3-D signatures are a key to understand core collapse supernovae and the GRB/SN connection. In this paper we study the effects and observational consequences of asymmetric explosions.


2004 ◽  
Vol 215 ◽  
pp. 601-612 ◽  
Author(s):  
S. E. Woosley ◽  
A. Heger

One of the most dramatic possible consequences of stellar rotation is its influence on stellar death, particularly of massive stars. If the angular momentum of the iron core when it collapses is such as to produce a neutron star with a period of 5 ms or less, rotation will have important consequences for the supernova explosion mechanism. Still shorter periods, corresponding to a neutron star rotating at break up, are required for the progenitors of gamma-ray bursts (GRBs). Current stellar models, while providing an excess of angular momentum to pulsars, still fall short of what is needed to make GRBs. The possibility of slowing young neutron stars in ordinary supernovae by a combination of neutrino-powered winds and the propeller mechanism is discussed. The fall back of slowly moving ejecta during the first day of the supernova may be critical. GRBs, on the other hand, probably require stellar mergers for their production and perhaps less efficient mass loss and magnetic torques than estimated thus far.


2017 ◽  
Vol 12 (S331) ◽  
pp. 1-10
Author(s):  
R. Hirschi ◽  
D. Arnett ◽  
A. Cristini ◽  
C. Georgy ◽  
C. Meakin ◽  
...  

AbstractMassive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.


2003 ◽  
Vol 212 ◽  
pp. 357-364 ◽  
Author(s):  
Alexander Heger ◽  
Stan E. Woosley ◽  
Norbert Langer

Massive stars are born rotating rigidly with a significant fraction of critical rotation at the surface. Consequently, rotationally-induced circulation and instabilities lead to chemical mixing in regions that would otherwise be stable, as well as a redistribution of angular momentum. Differential rotation also winds up magnetic fields, causing instabilities that can power a dynamo and magnetic stresses that lead to additional angular momentum transport. We follow the evolution of typical massive stars, their structure and angular momentum distribution, from the zero-age main sequence until iron core collapse. Without the action of magnetic fields, the resulting angular momentum is sufficiently large to significantly affect the explosion mechanism and neutron star formation. Sub-millisecond pulsars result that could encounter the r-mode instability. In helium cores massive enough, at least at low metalicity, the angular momentum is also sufficiently great to form a centrifugally supported accretion disk around a central black hole, powering the engine of the ‘collapsar’ model for GRBs. Including current estimates of the effect of magnetic fields still allows the formation of rapidly rotating (~ 5-10 ms) pulsars, but might leave too little angular momentum for collapsars.


2019 ◽  
Vol 207 ◽  
pp. 05007
Author(s):  
Marta Colomer Molla ◽  
Massimiliano Lincetto

Core Collapse Supernovae (CCSNe) are explosive phenomena that may occur at the end of the life of massive stars, releasing over 99% of the energy through neutrino emission. While the explosion mechanism is not fully understood, neutrinos are believed to play an important role. The only detection as of today are the 24 neutrinos from SN1987A. The observation of the next Galactic CCSN will lead to important breakthroughs in astroparticle physics. For a Galactic CCSN, the KM3NeT ORCA and ARCA detectors in the Mediterranean Sea will observe a significant neutrino signal via the detection of Cherenkov light, mostly induced by Inverse Beta Decay interactions in sea water. The detection of coincident photons by the 31 photomultipliers of each KM3NeT digital optical module (DOM) allows for an efficient discrimination of the optical backgrounds. The KM3NeT detection sensitivity to a Galactic CCSN and the potential to resolve the neutrino light-curve have been estimated relying on detailed Monte Carlo simulations. Specific criteria are proposed for the online triggering and the participation in the SNEWS network.


2017 ◽  
Vol 12 (S331) ◽  
pp. 113-118
Author(s):  
Rémi Kazeroni ◽  
Jérôme Guilet ◽  
Thierry Foglizzo

AbstractHydrodynamical instabilities may either spin-up or down the pulsar formed in the collapse of a rotating massive star. Using numerical simulations of an idealized setup, we investigate the impact of progenitor rotation on the shock dynamics. The amplitude of the spiral mode of the Standing Accretion Shock Instability (SASI) increases with rotation only if the shock to the neutron star radii ratio is large enough. At large rotation rates, a corotation instability, also known as low-T/W, develops and leads to a more vigorous spiral mode. We estimate the range of stellar rotation rates for which pulsars are spun up or down by SASI. In the presence of a corotation instability, the spin-down efficiency is less than 30%. Given observational data, these results suggest that rapid progenitor rotation might not play a significant hydrodynamical role in the majority of core-collapse supernovae.


Sign in / Sign up

Export Citation Format

Share Document