scholarly journals Biofuels Production from Biomass by Thermochemical Conversion Technologies

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
M. Verma ◽  
S. Godbout ◽  
S. K. Brar ◽  
O. Solomatnikova ◽  
S. P. Lemay ◽  
...  

Agricultural biomass as an energy resource has several environmental and economical advantages and has potential to substantially contribute to present days’ fuel demands. Currently, thermochemical processes for agricultural biomass to energy transformation seem promising and feasible. The relative advantage of thermochemical conversion over others is due to higher productivity and compatibility with existing infrastructure facilities. However, the majority of these processes are still under development phase and trying to secure a market share due to various challenges, right from suitable infrastructure, raw material, technical limitations, government policies, and social acceptance. The knowledge at hand suggests that biomass can become a sustainable and major contributor to the current energy demands, if research and development are encouraged in the field of thermochemical conversion for various agricultural biomass types. This paper intends to explore the physical and chemical characteristics of biofuel substitutes of fossil fuels, potential biomass sources, and process parameters for thermochemical conversion.

Author(s):  
Antonio Zuorro ◽  
Janet B. García-Martínez ◽  
Andrés F. Barajas-Solano

Over the last decades, microalgal biomass has gained a significant role in the development of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-end products (biodiesel, bioethanol, and biogas) due to rapid growth and high carbon fixing efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy security while reducing our current reliance on fossil fuels. From the technologies available for obtaining biofuels using microalgae biomass, thermochemical processes (pyrolysis, HTL, gasification) have proven to be processed with higher viability, because they use all biomass. However, the biocrudes obtained from direct thermochemical conversion have substantial quantities of heteroatoms (oxygen, nitrogen, and sulfur) due to the complexity of the biomass's content of chemical components (lipids, carbohydrates, and proteins). As a solution, catalyst-based processes have emerged as a sustainable solution for the increase in biocrude production. This paper's objective is to present a comprehensive review of recent developments on catalyst mediated conversion of algal biomass. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.


Author(s):  
Antonio Zuorro ◽  
Janet B. García-Martínez ◽  
Andrés F. Barajas-Solano

Over the last decades, microalgal biomass has gained a significant role in the development of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-end products (biodiesel, bioethanol, and biogas) due to rapid growth and high carbon fixing efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy security while reducing our current reliance on fossil fuels. From the technologies available for obtaining biofuels using microalgae biomass, thermochemical processes (pyrolysis, HTL, gasification) have proven to be processed with higher viability, because they use all biomass. However, because of the complexity of the biomass (lipids, carbohydrates , and proteins), the obtained biofuels from direct thermochemical conversion have large amounts of heteroatoms (oxygen, nitrogen , and sulfur). As a solution, catalyst-based processes have emerged as a sustainable solution for the increase in biocrude production. This paper's objective is to present a comprehensive review of recent developments on catalyst mediated conversion of algal biomass. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Antonio Zuorro ◽  
Janet B. García-Martínez ◽  
Andrés F. Barajas-Solano

Over the last decades, microalgal biomass has gained a significant role in the development of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-end products (biodiesel, bioethanol, and biogas) due to its rapid growth and high carbon-fixing efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy security while reducing our current reliance on fossil fuels. From the technologies available for obtaining biofuels using microalgae biomass, thermochemical processes (pyrolysis, Hydrothermal Liquefaction (HTL), gasification) have proven to be processed with higher viability, because they use all biomass. However, due to the complex structure of the biomass (lipids, carbohydrates, and proteins), the obtained biofuels from direct thermochemical conversion have large amounts of heteroatoms (oxygen, nitrogen, and sulfur). As a solution, catalyst-based processes have emerged as a sustainable solution for the increase in biocrude production. This paper’s objective is to present a comprehensive review of recent developments on the catalyst-mediated conversion of algal biomass. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.


2015 ◽  
Vol 137 (01) ◽  
pp. 46-51
Author(s):  
Nesrin Ozalp ◽  
Christian Sattler ◽  
James F. Klausner ◽  
James E. Miller

This article explores uses of solar energy as a substitute to fossil fuels. Solar energy is usually considered in terms of making electricity; however, it also has the potential to supplant fossil fuels in the production of liquid fuels, and in driving endothermic industrial processes. Solar thermochemical processes are feasible, and a solar power concentration process that harnesses sunlight’s infrared energy is the best suited technology for making solar fuels a reality. Another area in which solar commodity production may have advantages over traditional industrial practice is in the separation of pure metal and oxygen from metal oxides found naturally in many ore deposits. Solar fuels can provide a stable and strategically important energy resource; some may consider them to be the ideal solution for sustainable energy independence. Solar thermochemistry could potentially have the biggest impact in the production of hydrogen-derived fuels which would be capable of replacing those derived from fossil fuels.


2020 ◽  
Vol 18 (1) ◽  
pp. 874-881
Author(s):  
Laras Prasakti ◽  
Sangga Hadi Pratama ◽  
Ardian Fauzi ◽  
Yano Surya Pradana ◽  
Arief Budiman ◽  
...  

AbstractAs fossil fuels were depleting at an alarming rate, the development of renewable energy has become necessary. One of the promising renewable energy to be used is biodiesel. The interest in using third-generation feedstock, which is microalgae, is rapidly growing. The use of third-generation biodiesel feedstock will be more beneficial as it does not compete with food crop use and land utilization. The advantageous characteristic which sets microalgae apart from other biomass sources is that microalgae have high biomass yield. Conventionally, microalgae biodiesel is produced by lipid extraction followed by transesterification. In this study, combination process between hydrothermal liquefaction (HTL) and esterification is explored. The HTL process is one of the biomass thermochemical conversion methods to produce liquid fuel. In this study, the HTL process will be coupled with esterification, which takes fatty acid from HTL as raw material for producing biodiesel. Both the processes will be studied by simulating with Aspen Plus and thermodynamic analysis in terms of energy and exergy. Based on the simulation process, it was reported that both processes demand similar energy consumption. However, exergy analysis shows that total exergy loss of conventional exergy loss is greater than the HTL-esterification process.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


2021 ◽  
Vol 3 (1) ◽  
pp. 243-259
Author(s):  
Yadhu N. Guragain ◽  
Praveen V. Vadlani

Lignocellulosic biomass feedstocks are promising alternatives to fossil fuels for meeting raw material needs of processing industries and helping transit from a linear to a circular economy and thereby meet the global sustainability criteria. The sugar platform route in the biochemical conversion process is one of the promising and extensively studied methods, which consists of four major conversion steps: pretreatment, hydrolysis, fermentation, and product purification. Each of these conversion steps has multiple challenges. Among them, the challenges associated with the pretreatment are the most significant for the overall process because this is the most expensive step in the sugar platform route and it significantly affects the efficiency of all subsequent steps on the sustainable valorization of each biomass component. However, the development of a universal pretreatment method to cater to all types of feedstock is nearly impossible due to the substantial variations in compositions and structures of biopolymers among these feedstocks. In this review, we have discussed some promising pretreatment methods, their processing and chemicals requirements, and the effect of biomass composition on deconstruction efficiencies. In addition, the global biomass resources availability and process intensification ideas for the lignocellulosic-based chemical industry have been discussed from a circularity and sustainability standpoint.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 276
Author(s):  
Hang Jia ◽  
Haoxi Ben ◽  
Fengze Wu

Biochar is generally accepted and increasingly valued in scientific circles as solid products in the thermochemical conversion of biomass, mainly because of its rich carbon content. The purpose of this research is to investigate the impact of biochar from different sources on wheat growth. In particular, this work focused on the effect of different preparation methods and raw material of biochar on the growth of wheat and aim to find a potential soil substitute that can be used for crop cultivation. Two synthetic methods were evaluated: hydrothermal conversion and pyrolysis. The characterization of biochar was determined to explore the impact of its microstructure on wheat growth. The results show that the yield of biochar produced from high-pressure reactor is significantly higher than that obtained by using microwave reactor. For example, the biochar yield obtained through the former is about six times that of the latter when using steamed bread cooked as biomass raw material. In addition, the growth trend of wheat indicates that biochar has different promoting effects on the growth of wheat in its weight and height. The pyrolyzed carbon is more suitable for wheat growth and is even more effective than soil, indicating that pyrolyzed biochar has more potential to be an alternative soil in the future. Moreover, this research tries to explore the reasons that affect crop growth by characterizing biochar (including scanning electron microscopy (SEM), biofilm electrostatic test (BET) and Fourier transform infrared (FT-IR)). The results indicate that the biochar containing more pits and less hydroxyl functional are more suitable for storing moisture, which is one of the significant factors in the growth of crops. This study provides evidence of the effects of biochar on crop growth, both in terms of microstructure and macroscopic growth trends, which provides significant benefits for biochar to grow crops or plants.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 969
Author(s):  
Anna Trubetskaya ◽  
Leonidas Matsakas

Global consumption of materials such as forest resources, fossil fuels, earth metals and minerals are expected to double in the next 30 years, while annual waste production is estimated to increase by approximately 70% by 2050 [...]


2016 ◽  
Vol 7 (3) ◽  
pp. S77-S79
Author(s):  
Yudi Firmanul Arifin ◽  
Siti Hamidah ◽  
Yulian Firmana Arifin

Until now the raw material of wood especially Gelam (Melaleuca cajuputi) for supporting the construction of housing and other infrastructures is increasingly demand in Indonesia. On the Island of Borneo that partly consists of peat swamps needs Gelam very large and continuous, particularly for residential development. Ecological aspects are very important for supporting the silvicultural strategies. The aim of this study is to analyze ecological aspects which are very influence especially physical and chemical soil properties and microclimate as well. The utilization of study is to determine the silvicultural strategies for continuing production and conservation of Gelam in the future. The method was used a field survey around Gelam forest and did collecting samples and measuring there. The results showed in South Borneo the potency of Gelam is only 2,9-7,1 m3/ha and decreasing yearly. Normally Gelam with a diameter <4 cm have been cut down, as well as > 30 cm. Gelam can grow on the peat swamp forest where the soil was low pH 3.5-3.9. Most of pH of soil in these areas was influenced by phyrite (FeS2 of 0.4-2.2% and highest of Fe 90-302 ppm. C organic in the soil was included low-moderate 5.5-10.0%. Result of soil physic analysis showed composition of sand, dust, and clay of 9 : 54 : 57 % respectively. Temperature and humidity around peat swamp forest areas where was found Gelam were 31-33oC and 63-73% respectively. Most of areas around Gelam were grown Gelam Tikus (Syzygium inophylla) and some kind of shrubs.Key words: Gelam, potency, ecological aspects, silviculture


Sign in / Sign up

Export Citation Format

Share Document