scholarly journals Exergy analysis of conventional and hydrothermal liquefaction–esterification processes of microalgae for biodiesel production

2020 ◽  
Vol 18 (1) ◽  
pp. 874-881
Author(s):  
Laras Prasakti ◽  
Sangga Hadi Pratama ◽  
Ardian Fauzi ◽  
Yano Surya Pradana ◽  
Arief Budiman ◽  
...  

AbstractAs fossil fuels were depleting at an alarming rate, the development of renewable energy has become necessary. One of the promising renewable energy to be used is biodiesel. The interest in using third-generation feedstock, which is microalgae, is rapidly growing. The use of third-generation biodiesel feedstock will be more beneficial as it does not compete with food crop use and land utilization. The advantageous characteristic which sets microalgae apart from other biomass sources is that microalgae have high biomass yield. Conventionally, microalgae biodiesel is produced by lipid extraction followed by transesterification. In this study, combination process between hydrothermal liquefaction (HTL) and esterification is explored. The HTL process is one of the biomass thermochemical conversion methods to produce liquid fuel. In this study, the HTL process will be coupled with esterification, which takes fatty acid from HTL as raw material for producing biodiesel. Both the processes will be studied by simulating with Aspen Plus and thermodynamic analysis in terms of energy and exergy. Based on the simulation process, it was reported that both processes demand similar energy consumption. However, exergy analysis shows that total exergy loss of conventional exergy loss is greater than the HTL-esterification process.

Perspektif ◽  
2016 ◽  
Vol 14 (2) ◽  
pp. 87 ◽  
Author(s):  
DIBYO PRANOWO ◽  
MAMAN HERMAN ◽  
. SYAFARUDDIN

<p>ABSTRAK<br /><br />Kemiri sunan (Reutealis trisperma (Blanco) Airy Shaw) merupakan salah satu jenis tanaman penghasil minyak nabati yang memiliki potensi besar sebagai sumber bahan baku untuk biodiesel. Tingkat produktivitas yang dapat mencapai 8-9 ton minyak kasar atau setara dengan 6-8 ton biodiesel/ha/tahun memiliki nilai strategis terkait dengan program pemerintah dalam mencari alternatif sumber energi baru yang terbarukan. Pengembangan sumber energi terbarukan seperti yang berasal dari minyak nabati kemiri sunan merupakan salah satu alternatif dalam upaya memenuhi defisit energi untuk keperluan domestik sehingga Indonesia dapat keluar dari himpitan krisis energi. Lahan-lahan yang telah terdegradasi di Indonesia dari tahun ke tahun luasnya semakin bertambah baik karena faktor alam maupun karena eksploitasi yang tidak terkendali. Disisi lain pengembangan tanaman sumber BBN terkendala karena keterbatasan lahan. Kajian yang telah dilakukan secara intensif terhadap karakteristik tanaman, minyak dan biodiesel yang dihasilkannya, serta daya adaptasinya yang sangat luas terhadap beragam agroekosistem yang ada di Indonesia, tanaman kemiri sunan memberikan harapan yang baik disamping sebagai sumber bahan baku biodiesel, juga dapat berfungsi sebagai tanaman konservasi untuk mereklamasi lahan-lahan marginal yang telah terdegradasi. Disamping itu, pengembangan tanaman kemiri sunan di lahan yang telah terdegradasi tidak hanya akan dapat meningkatkan nilai ekonomi lahan tersebut, tetapi juga dapat dijadikan tanaman yang bernilai ekonomi tinggi, serta mampu menyediakan kebutuhan energi bagi masyarakat sekitar maupun ke wilayah yang lebih luas. <br />Kata kunci: Kemiri sunan, biodiesel, energi baru terbarukan, lahan terdegradasi, lahan bekas tambang.<br /><br />ABSTRACT</p><p>The Multiple Benefits of Developing Kemiri Sunan (Reutealis trisperma (Blanco) Airy Shaw) In Degraded Land<br /><br />Kemiri sunan (Reutealis trisperma (Blanco) Airy Shaw) is one kind of vegetable oil crops that have great potential as a source of raw material for biodiesel. The productivity level that can reach 8-9 tons of crude oil, equivalent to 6-8 tons of biodiesel/ha/year make as a strategic commodity associated with government programs to find alternative sources of renewable energy. Development of renewable energy such as from vegetable oils of kemiri sunan is one of the alternatives in an effort to solve the deficit of energy for domestic use so that Indonesia can way out of the crush of the energy crisis. Lands that have been degraded in Indonesia continuously increasing both cause of the extent of natural factors and uncontrolled exploitation. On the other hand the development of this plants retricted by aviability of land. The research88 Volume 14 Nomor 2, Des 2015 : 87 - 101 studies have been conducted on the characteristics of plants, oil and biodiesel production, and adaptability in very broadly of Indonesian agro-ecosystem, this plant show well hopes besides as a source of raw material for biodiesel, it can also function as a conservation plant to reclaim marginal lands that have been degraded. In addition, the development of kemiri sunan on degraded land will not only be able to increase the economic value of the land, but also can be used as crops of high economic value, and able to provide for the energy needs of the surrounding communities and to the wider region.<br />Keywords: Reutealis trisperma (Blanco) Airy Shaw, biodiesel, renewable energy, degraded land, post mained land.</p>


Author(s):  
Duangduen Atong ◽  
Viboon Sricharoenchaikul

Thermochemical conversion process has become a viable technology for managing excess waste from various industries while producing value added fuel products. In the work reported here, distribution of products (solid, liquid, and gas) by thermal conversion of wastes from biodiesel production process which are extracted physic nut and palm shell mixed with glycerol waste was carried out using a medium scale tubular reactor with feeding rate of 5 g/min. Several important operating parameters were studied including the proportion of each waste (100:0 – 70:30), reaction temperature (700 – 900°C) and air to fuel ratio (AF) 0.0 – 0.6. It was found that when the temperature increased, the quantity of solid and liquid product decreased while gas product increased. For conversion to CO2, CO, CxHy and H2, when the temperature increased, CO2 decreased while yields of CO, CH4 and H2 increased. Greater conversion to CO2, CO, H2 with AF increased from 0.0 to 0.3. Higher AF from 0.3 to 0.6 resulted in lesser CO and H2 while conversion to CO2 increased. On the other hand, CxHy decreased when AF changed from 0.0 to 0.6. The maximum heating values of gas product in this study are 3.48 MJ/m3 and 2.27 MJ/m3 for glycerol waste mixed with physic nut waste and palm shell waste, respectively (both at 30% glycerol wastes and reaction temperature of 900°C). The maximum of mole ratio of H2 to CO obtained is 0.59 for physic nut and 0.37 for palm shell mixed wastes. Relatively high CxHy, low product gas heating value and H2 to CO ratio indicated the need for further product upgrading before using as raw material for other advanced fuel production processes such as Fisher-Tropsch, DME, or methanol syntheses beside direct heat and power utilization.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1473
Author(s):  
Marco Castellini ◽  
Stefano Ubertini ◽  
Diego Barletta ◽  
Ilaria Baffo ◽  
Pietro Buzzini ◽  
...  

Today one of the most interesting ways to produce biodiesel is based on the use of oleaginous microorganisms, which can accumulate microbial oil with a composition similar to vegetable oils. In this paper, we present a thermo-chemical numerical model of the yeast biodiesel production process, considering cardoon stalks as raw material. The simulation is performed subdividing the process into the following sections: steam explosion pre-treatment, enzymatic hydrolysis, lipid production, lipid extraction, and alkali-catalyzed transesterification. Numerical results show that 406.4 t of biodiesel can be produced starting from 10,000 t of lignocellulosic biomass. An economic analysis indicates a biodiesel production cost of 12.8 USD/kg, thus suggesting the need to increase the capacity plant and the lipid yield to make the project economically attractive. In this regard, a sensitivity analysis is also performed considering an ideal lipid yield of 22% and 100,000 t of lignocellulosic biomass. The biodiesel production costs related to these new scenarios are 7.88 and 5.91 USD/kg, respectively. The large capacity plant combined with a great lipid yield in the fermentation stage shows a biodiesel production cost of 3.63 USD/kg making the product competitive on the current market of biofuels by microbial oil.


Author(s):  
Yotwadee Hawangchu ◽  
Duangduen Atong ◽  
Viboon Sricharoenchaikul

Glycerol waste from biodiesel production can be converted to syngas (CO+H2) via a thermochemical conversion process. In this study, microwave was used to initiate a glycerol conversion reaction in a specially fabricated quartz tube reactor with a silicon carbide bed as the microwave absorber. A nickel-based catalyst and steam were added to the reacting bed to enhance production of hydrogen. By adjusting the microwave power level from 110 to 880 watt (W), the reaction temperature of 500°C to more than 1400°C could be rapidly achieved within a few minutes, which is much faster than heating by conventional furnaces. The gasification reaction commenced by feeding raw material continuously through the hot silicon carbide bed at a rate of 1 g/min with the O2 to fuel ratio varying from 0-0.25. The overall time for each trial was 20-30 minutes including preheating of the bed material. In contrast to typical biomass gasification, char and tar yields were small in most runs. In general, glycerol waste yielded higher syngas when compared with pure glycerol conversion. Complete conversion to gas product may be achieved at a power level of 440W. The maximum syngas production from glycerol waste without a catalyst was more than 23.98 L over 20 min run at 660 W with 0.25 O2 to fuel ratio. Overall content of other hydrocarbon gases was around 3-28 vol.% depending on operating conditions and raw material. Lower heating values (LHV) of product gas for glycerol waste were much higher for runs at 1.0 L/min carrier gas flow, ranging from 3.75-17.64 MJ/m3 while relatively stable LHV of 1.96-5.88 were obtained from 2.0 L/min flow. The addition of a catalyst significantly increased gas production at lower wattage runs where overall conversions were comparable to those of higher wattage experiments without catalysts. The maximum total conversion and LHV were obtained from 1%Ni/SiC catalyst at a reaction temperature of 600°C (330W) and no external O2 with a gas product heating value of 9.18 MJ/m3 and 1.32 H2 to CO ratio. From these results, the novel microwave-induced heating technique can be considered as an efficient option for conversion of glycerol waste via the gasification process to acceptable quality syngas.


2021 ◽  
Vol 27 (3) ◽  
pp. 203-211
Author(s):  
Desalegn Abdissa

Abstract Sewage sludge is one of the most polluting wastes that affect the environment, which contains organic and inorganic pollutants released into the surroundings. Using non-renewable energy for the engine also releases large amounts of pollutants results from combustion products was other issues to the environment. The decline of non-renewable energy sources, such as natural gas, fossil fuel, and petroleum made the world increase the production of alternative fuels like waste-derived fuels. Recently, biodiesel production developed from edible oil to cover the depilation of non-renewable energy supply. But it has also become a significant challenge for food security. Therefore, finding other potential opportunities for lipid extraction is crucial. Algae and sludge conversion presented by recent studies seem to be a promising method. The paper presents the extraction and optimization of lipids from blended sludge and algae for biodiesel production. The procedure of the study was a characterization of algal and sludge wastes, the extraction of the lipid component by Soxhlet extraction, and the parameters optimization for maximum oil yield obtain. Temperature, extraction time, and solvents were the basic factor affect oil extraction yield. In the optimization 80 temperature, 6hrs time and hexane solvent results in 61% oil extraction yield which maximum point. Algae and wastewater sludge high potential of lipid and can be substitute edible oil supplies for biodiesel production.


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


2020 ◽  
Vol 4 (3) ◽  
pp. 1199-1207
Author(s):  
Amruta P. Kanakdande ◽  
Chandrahasya N. Khobragade ◽  
Rajaram S. Mane

The continuous rising demands and fluctuations in the prices of fossil fuels warrant searching for an alternative renewable energy source to manage the energy needs.


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 34
Author(s):  
Sukanya Hongthong ◽  
Hannah S. Leese ◽  
Michael J. Allen ◽  
Christopher J. Chuck

Marine macroalgae offers a promising third generation feedstock for the production of fuels and chemicals, avoiding competition with conventional agriculture and potentially helping to improve eutrophication in seas and oceans. However, an increasing amount of plastic is distributed into the oceans, and as such contaminating macroalgal beds. One of the major plastic contaminants is nylon 6 derived from discarded fishing gear, though an increasing amount of alternative nylon polymers, derived from fabrics, are also observed. This study aimed to assess the effect of these nylon contaminants on the hydrothermal liquefaction of Fucus serratus. The hydrothermal liquefaction (HTL) of macroalgae was undertaken at 350 °C for 10 min, with a range of nylon polymers (nylon 6, nylon 6/6, nylon 12 and nylon 6/12), in the blend of 5, 20 and 50 wt.% nylon to biomass; 17 wt.% biocrude was achieved from a 50% blend of nylon 6 with F. serratus. In addition, nylon 6 completely broke down in the system producing the monomer caprolactam. The suitability of converting fishing gear was further demonstrated by conversion of actual fishing line (nylon 6) with the macroalgae, producing an array of products. The alternative nylon polymer blends were less reactive, with only 54% of the nylon 6/6 breaking down under the HTL conditions, forming cyclopentanone which distributed into the biocrude phase. Nylon 6/12 and nylon 12 were even less reactive, and only traces of the monomer cyclododecanone were observed in the biocrude phase. This study demonstrates that while nylon 6 derived from fishing gear can be effectively integrated into a macroalgal biorefinery, alternative nylon polymers from other sectors are too stable to be converted under these conditions and present a real challenge to a macroalgal biorefinery.


2021 ◽  
pp. 100696
Author(s):  
Prakash Bhuyar ◽  
Sathyavathi Sundararaju ◽  
Mohd Hasbi Ab. Rahim ◽  
Gaanty Pragas Maniam ◽  
Natanamurugaraj Govindan

2021 ◽  
Vol 3 (1) ◽  
pp. 19-36
Author(s):  
Tamás Mizik ◽  
Gábor Gyarmati

As Earth’s fossil energy resources are limited, there is a growing need for renewable resources such as biodiesel. That is the reason why the social, economic and environmental impacts of biofuels became an important research topic in the last decade. Depleted stocks of crude oil and the significant level of environmental pollution encourage researchers and professionals to seek and find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-generation technology; however, further generations cannot be price-competitive at this moment due to the immature technology and high production costs. However, there are promising alternatives, such as wastewater-based microalgae with up to 70% oil content, fat, oils and grease (FOG), when production cost is below 799 USD/gallon, and municipal solid waste-volatile fatty acids technology, where the raw material is free. Proper management of the co-products (mainly glycerol) is essential, especially at the currently low petroleum prices (0.29 USD/L), which can only be handled by the biorefineries. Sustainability is sometimes translated as cost efficiency, but the complex interpretation is becoming more common. Common elements of sustainability are environmental and social, as well as economic, issues.


Sign in / Sign up

Export Citation Format

Share Document