scholarly journals Bionic Design for Column of Gantry Machining Center to Improve the Static and Dynamic Performance

2012 ◽  
Vol 19 (4) ◽  
pp. 493-504 ◽  
Author(s):  
Shihao Liu ◽  
Wenhua Ye ◽  
Peihuang Lou ◽  
Weifang Chen ◽  
Jungui Huang ◽  
...  

In order to improve the machining accuracy of a gantry machining center, structural bionic design for column was conducted. Firstly, the bionic design method for stiffener plate structure was established based on distribution principles of gingko root system. The bionic design method was used to improve column structure of the gantry machining center, and three kinds of bionic columns were put forward. The finite element analysis on original and bionic columns indicates that the mass of the column with the best bionic stiffener plate structure is reduced by 2.74% and the first five order natural frequencies are increased by 6.62% on average. The correctness of column's bionic design method proposed in this paper was verified by the static and dynamic experiments. Finally, the bionic principles for stiffener plate of column were concluded, which provides a new idea for updating traditional design concepts and achieving lightweight structure of machine tool components.

2013 ◽  
Vol 378 ◽  
pp. 579-583 ◽  
Author(s):  
Fei Fei Xiang ◽  
Zhong Ke Xiang ◽  
Hong Ying Li

We aimed at high speed machining center high machining accuracy and lightweight design requirements ,Then design the two different stiffened plate structure workbench, The one use traditional design method, the other use bionic design method; Optimize the dimensions of bionic stiffened plate design based on CAD/CAE system integration and hierarchical optimization techniques, got the optimal size; through the static analysis and modal analysis verify the superiority of the optimization schemes.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2013 ◽  
Vol 437 ◽  
pp. 194-197
Author(s):  
Xiao Peng Li ◽  
Xing Ju ◽  
Guang Hui Zhao ◽  
Ya Min Liang ◽  
Hao Tian Yang

Dynamic characteristics of the system have been given more and more attention so as to improve the retention and reliability of machining accuracy. Research has shown that dynamic performance of the feed drive mechanism has significant impact on the processing quality and efficiency of CNC. This paper mainly focuses on the DCG which realizes its motion on the basis of a pair of lead screw. The dynamic performance of the DCG was analyzed by the method of finite element analysis. DCG structure and the key design parameters of the rail joint surface have been studied to find out the influence on its dynamic characteristics. These researches provided a basis for the realization of the CNC feed motion of high-speed and high-precision. Besides, it is also possible to improve the overall performance of CNC machine tools.


2015 ◽  
Vol 9 (1) ◽  
pp. 226-233 ◽  
Author(s):  
Zheng Minli ◽  
Cheng Fenglan ◽  
Zhao Jiaxue ◽  
Sun Shouzheng ◽  
Jiang Chongmin

Aiming at the demands of nuclear water chamber head’s multi-inclined holes and ramps in boring and milling, based on design requirements of special turning and milling machining center, B-axis structural design is put forward, research on deformation characteristics of ram components under different swing angle, propose the control methods of deformation and errors. Adopt modeling method of equal mass, construction of deformation and displacement analysis model of B-axis components, explore formation reason of maximum gap between components’ joint surface, form optimization design scheme of rotation structure of B-axis components. Trial-produce prototype of B-axis components, make experiment of trial cut water chamber head in turning and milling machining center, utilize test results of part's machining quality, verify unloading effects and machining accuracy of design scheme of B-axis components has been verified.


2006 ◽  
Vol 315-316 ◽  
pp. 131-135
Author(s):  
Q. Zhang ◽  
Ze Sheng Lu

Ultra-precision positioning technique has become one of the important parts in the development of precision machines. Flexure stage driven by piezoelectric actuator (PZT) has been used widely as micro-feed installation because they have many advantages, such as: driving directly, fine displacement resolution, no friction or spacing. This paper designed a micro-feed stage driven by PZT using clinograph mechanism, analyzed the influence of flexure hinges on the static and dynamic performance of micro-feed stage based on finite element analysis. The design procedure was presented by which we can determine the geometrical dimensions of flexure hinge easily and achieve desired performance parameters of the stage, and the effectiveness of the design method was validated by experiment.


2011 ◽  
Vol 105-107 ◽  
pp. 204-207
Author(s):  
Jian Dong Shang ◽  
Jun Qi Guo ◽  
Dong Fang Hu

The vibration is a high-precision machine tool components in the design of the major issues, facing its precision has a great influence, so column parts of its modal analysis is necessary. Creating three-dimensional finite element model of the column, using finite element analysis software ANSYS modal analysis of the column, which can reached the first five natural frequencies and mode shapes. Column Part of our understanding of dynamic performance and improve the machining accuracy is helpful. Modal analysis method is the dynamic performance of the column on the main approach, which mainly is to determine the vibration characteristics of the column that is the natural frequency and vibration mode, which we can determine the modes of processing accuracy, and thus the relevant parts of the machine column can be optimized so that it meet the requirements.


2011 ◽  
Vol 80-81 ◽  
pp. 985-989 ◽  
Author(s):  
Dong Qiang Gao ◽  
Fei Zhang ◽  
Zhi Yun Mao ◽  
Huan Lin ◽  
Jiang Miao Yi

DVG850 high-speed machining center worktable is taken as research object, in order to meet the overall performance requirements of the high-speed machining center, 3D model of worktable is established in SolidWorks. Static analysis and modal analysis are carried out in ANSYS Workbench, and then the worktable is optimized in topology optimization module of ANSYS Workbench. According with the analysis results, the worktable structure has improved. The improved worktable keeps the original’s static performance, and enhances the dynamic performance; however, its quality is lighter than original structure by 23.2 kg.


2014 ◽  
Vol 610 ◽  
pp. 123-128
Author(s):  
Do Hong Zhao ◽  
Jing Sun ◽  
Ke Zhang ◽  
Yu Hou Wu ◽  
Feng Lu

Nowadays, the equipment for processing special-shaped stone products is developing towards high efficiency, intelligent and multifunction. Based on the features of stone processing technology, a sawing-milling compound machining center with eight axes and double five-axis simultaneous control for special-shaped stone products was designed. The dynamic performance and processing capacity were tested. Research shows that the sawing and milling compound machining in the same horizontal slide saddle is practicable. This machine can realize both vertical and horizontal machining under five-axis simultaneous control, and its machining accuracy is better than the normal industrial standard.


Sign in / Sign up

Export Citation Format

Share Document