A Study on Design of Ultra-Precision Micro-Feed Stage

2006 ◽  
Vol 315-316 ◽  
pp. 131-135
Author(s):  
Q. Zhang ◽  
Ze Sheng Lu

Ultra-precision positioning technique has become one of the important parts in the development of precision machines. Flexure stage driven by piezoelectric actuator (PZT) has been used widely as micro-feed installation because they have many advantages, such as: driving directly, fine displacement resolution, no friction or spacing. This paper designed a micro-feed stage driven by PZT using clinograph mechanism, analyzed the influence of flexure hinges on the static and dynamic performance of micro-feed stage based on finite element analysis. The design procedure was presented by which we can determine the geometrical dimensions of flexure hinge easily and achieve desired performance parameters of the stage, and the effectiveness of the design method was validated by experiment.

2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2010 ◽  
Vol 297-301 ◽  
pp. 396-401
Author(s):  
Mehrdad Vahdati ◽  
E. Azimi ◽  
Ali Shokuhfar

Air Spindles have been used in ultra precision machines for several years due to their advantages such as high speed rotation, low friction, and low vibration, [1]. Air spindles are widely used in these machines for producing precise work pieces. Although, spindles function on a very complicated theoretical basis, [2, 3], their structure is very simple and consists of mainly a rotor and a stator. The rotor/stator could be made of different shapes. A cylindrical shape is the one commonly in use. The spindle designed in this work has a spherical configuration. It has been designed so that it could be moved without application of electric motor and only by a wind turbine system, [4]. The spindle studied in this research uses compressed air for rotor suspension, and has an air turbine for rotating its shaft. A thin air film acts as bearing layer between rotor and stator. In design procedure, operation parameters such as air inlet pressure for turbine, air inlet pressure for bearing, diameter of turbine nuzzles, diameter of bearing nuzzles, clearance between rotor and stator and etc. have been considered, [5]. A prototype spindle has been manufactured using design criteria. The influence of above mentioned parameters have been recognized through experiments.


2014 ◽  
Vol 621 ◽  
pp. 385-391
Author(s):  
Jian Xin Zheng ◽  
Jie Han ◽  
Chuan Shao Liu

The mechanism of longitudinal-torsional vibration (LTV) realized by using converter with multiple diagonal slits (MDS) was analyzed based on the acoustic wave propagation when acoustic wave enters obliquely from steel to air. The influences of geometrical parameters of the stepped compound horn with multiple diagonal slits on natural frequencies of LTV were studied with finite element analysis (FEA). The design procedure of stepped compound horn with LTV was provided. The vibration characteristics of actual horn were analyzed with simulation and test. The FEA results show that LTV of the output end of the stepped compound horn may be realized when the input end is excited by longitudinal vibration at certain natural frequency if suitable geometrical dimensions are selected, and the amplitude of the horn is periodical; the trajectory of the particle in the output end is helical curve. The test results indicate that LTV may be realized by stepped compound horn under single acoustic excitation, and the vibration frequency is close to the simulation result, and its vibration properties are good. This method may be applied to design the acoustics system of ultrasonic machining with LTV under single acoustic excitation.


2020 ◽  
Vol 319 ◽  
pp. 01002
Author(s):  
Zizhou Sun ◽  
Yifan Dai ◽  
Hao Hu ◽  
Chaoliang Guan ◽  
Guipeng Tie ◽  
...  

Ultra-precision shaft components are widely used, such as the shaft core of air-floating spindle, etc. At present, the final precision of such workpieces are difficult to reach through CNC machining tools, but often with the help of manual grinding, of which the machining precision and efficiency are greatly limited. Based on the deterministic figuring method, this paper uses an abrasive belt polishing machine to carry out ultra-precision figuring experiments on shaft parts. On this basis, an ultra-precision composite machine tool for shaft parts is designed with the functions of turning, grinding and abrasive belt polishing. The dynamic performance requirements of the machine tool are put forward by analyzing the precision index of the workpiece and the error control principle of deterministic figuring, and the structure of machine tool is designed and the performance parameters of each part are selected. combined with the finite element analysis, the key components are optimized to meet the machining requirements of 0.1μm roundness and 1μm cylindricity on the steel shaft.


Author(s):  
Y Yang ◽  
S Chen ◽  
D Huo ◽  
K Cheng

Ultra-precision machining with a fast tool servo (FTS) is one of the leading methodologies for the fabrication of microstructured surfaces. FTS is an independently operated positioning device that plays an important role in the machining system. The complexity of surface features and the surface quality depend largely on the behaviour of FTS. In this paper, according to the analysis of required performance, a novel FTS is developed with structural parameters optimized by the finite-element analysis (FEA) method. Finally, a series of tests are carried out to evaluate the performance of the FTS and validate the value obtained by the FEA software. The results show that the FTS has a travel of 20 μm, a positioning resolution of 5 nm, a static stiffness of 33.62 N/μm, and a dominant natural frequency of 2191 Hz and demonstrate the validity of the optimal design method.


2011 ◽  
Vol 189-193 ◽  
pp. 2233-2237 ◽  
Author(s):  
Ya Qiong Deng ◽  
Jin Gang Wang ◽  
Yi Wen ◽  
Shuang Zhao ◽  
Li Li Dai

Taking an aluminum tank semitrailer as an example, this essay aim to analyze the strength and stiffness of the tank semitrailer and obtain stress and strain characteristics under different conditions on the basis of a finite element model, by using the finite element analysis software. By carrying on modal analysis in different work conditions, the essay gets the dynamic performance parameters of the tank. The results show that the tank fully meets the requirements of using, and the performance parameters of the tank will be foundation for the optimization.


2012 ◽  
Vol 19 (4) ◽  
pp. 493-504 ◽  
Author(s):  
Shihao Liu ◽  
Wenhua Ye ◽  
Peihuang Lou ◽  
Weifang Chen ◽  
Jungui Huang ◽  
...  

In order to improve the machining accuracy of a gantry machining center, structural bionic design for column was conducted. Firstly, the bionic design method for stiffener plate structure was established based on distribution principles of gingko root system. The bionic design method was used to improve column structure of the gantry machining center, and three kinds of bionic columns were put forward. The finite element analysis on original and bionic columns indicates that the mass of the column with the best bionic stiffener plate structure is reduced by 2.74% and the first five order natural frequencies are increased by 6.62% on average. The correctness of column's bionic design method proposed in this paper was verified by the static and dynamic experiments. Finally, the bionic principles for stiffener plate of column were concluded, which provides a new idea for updating traditional design concepts and achieving lightweight structure of machine tool components.


2011 ◽  
Vol 86 ◽  
pp. 268-272
Author(s):  
Quan Xian Wang ◽  
Wei Tang ◽  
Ning Jun Ye

Proposed a design method of the geometrical dimensions of cone-shape end-face teeth of coupling flange, established an intensity check equation for end-face teeth, and inspected by the finite-element analysis. This method can be used for the general series design of end-face teeth of coupling flange between φ500~φ1200, it also can be used as a reference for design of some small specifications.


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


Sign in / Sign up

Export Citation Format

Share Document