scholarly journals Mitochondrial Stress Signalling: HTRA2 and Parkinson's Disease

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Enrico Desideri ◽  
L. Miguel Martins

Mitochondria are cellular energy generators whose activity requires a continuous supply of oxygen. Recent genetic analysis has suggested that defects in mitochondrial quality control may be key factors in the development of Parkinson’s disease (PD). Mitochondria have a crucial role in supplying energy to the brain, and their deterioration can affect the function and viability of neurons, contributing to neurodegeneration. These organelles can sow the seeds of their own demise because they generate damaging oxygen-free radicals as a byproduct of their intrinsic physiological functions. Mitochondria have therefore evolved specific molecular quality control mechanisms to compensate for the action of damaging agents such as oxygen-free radicals. PTEN-induced putative kinase 1 (PINK1) and high-temperature-regulated A2 (HTRA2), a mitochondrial protease, have recently been proposed to be key modulators of mitochondrial molecular quality control. Here, we review some of the most recent advances in our understanding of mitochondria stress-control pathways, focusing on how signalling by the p38 stress kinase pathway may regulate mitochondrial stress by modulating the activity of HTRA2 via PINK1 and cyclin-dependent kinase 5 (CDK5). We also propose how defects in this pathway may contribute to PD.

Physiology ◽  
1993 ◽  
Vol 8 (1) ◽  
pp. 45-49 ◽  
Author(s):  
MBH Youdim ◽  
D Ben-Shachar ◽  
P Riederer

There now is evidence for oxidative stress in the substantia nigra in brains of patients with Parkinson's disease that may be initiated either by an excessive generation of oxygen free radicals and/or a diminution of scavenging radicals. Evidence for participation of iron and melanin in these processes is described.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 371
Author(s):  
Filipa Barroso Gonçalves ◽  
Vanessa Alexandra Morais

Mitochondria are known as highly dynamic organelles essential for energy production. Intriguingly, in the recent years, mitochondria have revealed the ability to maintain cell homeostasis and ultimately regulate cell fate. This regulation is achieved by evoking mitochondrial quality control pathways that are capable of sensing the overall status of the cellular environment. In a first instance, actions to maintain a robust pool of mitochondria take place; however, if unsuccessful, measures that lead to overall cell death occur. One of the central key players of these mitochondrial quality control pathways is PINK1 (PTEN-induce putative kinase), a mitochondrial targeted kinase. PINK1 is known to interact with several substrates to regulate mitochondrial functions, and not only is responsible for triggering mitochondrial clearance via mitophagy, but also participates in maintenance of mitochondrial functions and homeostasis, under healthy conditions. Moreover, PINK1 has been associated with the familial form of Parkinson’s disease (PD). Growing evidence has strongly linked mitochondrial homeostasis to the central nervous system (CNS), a system that is replenished with high energy demanding long-lasting neuronal cells. Moreover, sporadic cases of PD have also revealed mitochondrial impairments. Thus, one could speculate that mitochondrial homeostasis is the common denominator in these two forms of the disease, and PINK1 may play a central role in maintaining mitochondrial homeostasis. In this review, we will discuss the role of PINK1 in the mitochondrial physiology and scrutinize its role in the cascade of PD pathology.


2021 ◽  
Vol 127 ◽  
pp. 1-16
Author(s):  
Amir Hossein Poorjam ◽  
Mathew Shaji Kavalekalam ◽  
Liming Shi ◽  
Jordan P. Raykov ◽  
Jesper Rindom Jensen ◽  
...  

1993 ◽  
Vol 33 (1) ◽  
pp. 60-68 ◽  
Author(s):  
T. Yoshikawa ◽  
T. Yoshikawa

2010 ◽  
Vol 22 (5) ◽  
pp. 848-859 ◽  
Author(s):  
Roshan Cools ◽  
Robert Rogers ◽  
Roger A. Barker ◽  
Trevor W. Robbins

Cognitive dysfunction in Parkinson's disease (PD) has been hypothesized to reflect a failure of cortical control. In keeping with this hypothesis, some of the cognitive deficits in PD resemble those seen in patients with lesions in the lateral pFC, which has been associated with top–down attentional control. However, there is no direct evidence for a failure of top–down control mechanisms in PD. Here we fill this gap by demonstrating disproportionate control by bottom–up attention to dimensional salience during attentional set shifting. Patients needed significantly more trials to criterion than did controls when shifting to a low-salient dimension while, remarkably, needing significantly fewer trials to criterion than did controls when shifting to a high-salient dimension. Thus, attention was captured by bottom–up attention to salient information to a greater extent in patients than in controls. The results provide a striking reinterpretation of prior set-shifting data and provide the first direct evidence for a failure of top–down attentional control, resembling that seen after catecholamine depletion in the pFC.


2021 ◽  
Author(s):  
Sahabuddin Ahmed ◽  
Samir Ranjan Panda ◽  
Mohit Kwatra ◽  
Bidya Dhar Sahu ◽  
VGM Naidu

Abstract Several activators of NLRP3 inflammasome have been described; however, the central mechanisms of NLRP3 inflammasome activation in brain microglia, especially at the activating step through free radical generation, still require further clarification. Hence the present study aimed to investigate the role of free radicals in activating NLRP3 inflammasome driven neurodegeneration and elucidated the neuroprotective role of perillyl alcohol (PA) in vitro and in vivo models of Parkinson’s disease. Initial priming of microglial cells with lipopolysaccharide (LPS) following treatment with hydrogen peroxide (H2O2) induces NF-κB translocation to nucleus with robust generation of free radicals that act as Signal 2 in augmenting NLRP3 inflammasome assembly and its downstream targets. PA treatment suppresses nuclear translocation of NF-κB and maintains cellular redox homeostasis in microglia that limits NLRP3 inflammasome activation along with processing active caspase-1, IL-1β and IL-18. To further correlates the in vitro study with in vivo MPTP model, treatment with PA also inhibits the nuclear translocation of NF-κB and downregulates the NLRP3 inflammasome activation. PA administration upregulates various antioxidant enzymes levels and restored the level of dopamine and other neurotransmitters in the striatum of the mice brain with improved behavioural activities. Additionally, treatment with Mito-TEMPO (a mitochondrial ROS inhibitor) was also seen to inhibit NLRP3 inflammasome and rescue dopaminergic neuron loss in the mice brain. Therefore, we conclude that NLRP3 inflammasome activation requires a signal from damaged mitochondria for its activation. Further pharmacological scavenging of free radicals restricts microglia activation and simultaneously supports neuronal survival via targeting NLRP3 inflammasome pathway in Parkinson’s disease.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3547
Author(s):  
Srinivasa Reddy Bonam ◽  
Christine Tranchant ◽  
Sylviane Muller

Cellular quality control systems have gained much attention in recent decades. Among these, autophagy is a natural self-preservation mechanism that continuously eliminates toxic cellular components and acts as an anti-ageing process. It is vital for cell survival and to preserve homeostasis. Several cell-type-dependent canonical or non-canonical autophagy pathways have been reported showing varying degrees of selectivity with regard to the substrates targeted. Here, we provide an updated review of the autophagy machinery and discuss the role of various forms of autophagy in neurodegenerative diseases, with a particular focus on Parkinson’s disease. We describe recent findings that have led to the proposal of therapeutic strategies targeting autophagy to alter the course of Parkinson’s disease progression.


Sign in / Sign up

Export Citation Format

Share Document