scholarly journals Performance Analysis of Alignment Process of MEMS IMU

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Vadim Bistrov

The procedure of determining the initial values of the attitude angles (pitch, roll, and heading) is known as the alignment. Also, it is essential to align an inertial system before the start of navigation. Unless the inertial system is not aligned with the vehicle, the information provided by MEMS (microelectromechanical system) sensors is not useful for navigating the vehicle. At the moment MEMS gyroscopes have poor characteristics and it’s necessary to develop specific algorithms in order to obtain the attitude information of the object. Most of the standard algorithms for the attitude estimation are not suitable when using MEMS inertial sensors. The wavelet technique, the Kalman filter, and the quaternion are not new in navigation data processing. But the joint use of those techniques for MEMS sensor data processing can give some new results. In this paper the performance of a developed algorithm for the attitude estimation using MEMS IMU (inertial measurement unit) is tested. The obtained results are compared with the attitude output of another commercial GPS/IMU device by Xsens. The impact of MEMS sensor measurement noises on an alignment process is analysed. Some recommendations for the Kalman filter algorithm tuning to decrease standard deviation of the attitude estimation are given.

2019 ◽  
Vol 38 (10-11) ◽  
pp. 1286-1306 ◽  
Author(s):  
Adrian Battiston ◽  
Inna Sharf ◽  
Meyer Nahon

An extensive evaluation of attitude estimation algorithms in simulation and experiments is performed to determine their suitability for a collision recovery pipeline of a quadcopter unmanned aerial vehicle. A multiplicative extended Kalman filter (MEKF), unscented Kalman filter (UKF), complementary filter, [Formula: see text] filter, and novel adaptive varieties of the selected filters are compared. The experimental quadcopter uses a PixHawk flight controller, and the algorithms are implemented using data from only the PixHawk inertial measurement unit (IMU). Performance of the aforementioned filters is first evaluated in a simulation environment using modified sensor models to capture the effects of collision on inertial measurements. Simulation results help define the efficacy and use cases of the conventional and novel algorithms in a quadcopter collision scenario. An analogous evaluation is then conducted by post-processing logged sensor data from collision flight tests, to gain new insights into algorithms’ performance in the transition from simulated to real data. The post-processing evaluation compares each algorithm’s attitude estimate, including the stock attitude estimator of the PixHawk controller, to data collected by an offboard infrared motion capture system. Based on this evaluation, two promising algorithms, the MEKF and an adaptive [Formula: see text] filter, are selected for implementation on the physical quadcopter in the control loop of the collision recovery pipeline. Experimental results show an improvement in the metric used to evaluate experimental performance, the time taken to recover from the collision, when compared with the stock attitude estimator on the PixHawk (PX4) software.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3435 ◽  
Author(s):  
Xin Li ◽  
Yan Wang ◽  
Kourosh Khoshelham

Ultra wideband (UWB) has been a popular technology for indoor positioning due to its high accuracy. However, in many indoor application scenarios UWB measurements are influenced by outliers under non-line of sight (NLOS) conditions. To detect and eliminate outlying UWB observations, we propose a UWB/Inertial Measurement Unit (UWB/IMU) fusion filter based on a Complementary Kalman Filter to track the errors of position, velocity and direction. By using the least squares method, the positioning residual of the UWB observation is calculated, the robustness factor of the observation is determined, and an observation weight is dynamically set. When the robustness factor does not exceed a pre-defined threshold, the observed value is considered trusted, and adaptive filtering is used to track the system state, while the abnormity of system state, which might be caused by IMU data exceptions or unreasonable noise settings, is detected by using Mahalanobis distance from the observation to the prior distribution. When the robustness factor exceeds the threshold, the observed value is considered abnormal, and robust filtering is used, whereby the impact of UWB data exceptions on the positioning results is reduced by exploiting Mahalanobis distance. Experimental results show that the observation error can be effectively estimated, and the proposed algorithm can achieve an improved positioning accuracy when affected by outlying system states of different quantity as well as outlying observations of different proportion.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 364 ◽  
Author(s):  
Ming Xia ◽  
Chundi Xiu ◽  
Dongkai Yang ◽  
Li Wang

The pedestrian navigation system (PNS) based on inertial navigation system-extended Kalman filter-zero velocity update (INS-EKF-ZUPT or IEZ) is widely used in complex environments without external infrastructure owing to its characteristics of autonomy and continuity. IEZ, however, suffers from performance degradation caused by the dynamic change of process noise statistics and heading estimation errors. The main goal of this study is to effectively improve the accuracy and robustness of pedestrian localization based on the integration of the low-cost foot-mounted microelectromechanical system inertial measurement unit (MEMS-IMU) and ultrasonic sensor. The proposed solution has two main components: (1) the fuzzy inference system (FIS) is exploited to generate the adaptive factor for extended Kalman filter (EKF) after addressing the mismatch between statistical sample covariance of innovation and the theoretical one, and the fuzzy adaptive EKF (FAEKF) based on the MEMS-IMU/ultrasonic sensor for pedestrians was proposed. Accordingly, the adaptive factor is applied to correct process noise covariance that accurately reflects previous state estimations. (2) A straight motion heading update (SMHU) algorithm is developed to detect whether a straight walk happens and to revise errors in heading if the ultrasonic sensor detects the distance between the foot and reflection point of the wall. The experimental results show that horizontal positioning error is less than 2% of the total travelled distance (TTD) in different environments, which is the same order of positioning error compared with other works using high-end MEMS-IMU. It is concluded that the proposed approach can achieve high performance for PNS in terms of accuracy and robustness.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5459 ◽  
Author(s):  
Xuliang Lu ◽  
Zhongbin Wang ◽  
Chao Tan ◽  
Haifeng Yan ◽  
Lei Si ◽  
...  

To measure the support attitude of hydraulic support, a support attitude sensing system composed of an inertial measurement unit with microelectromechanical system (MEMS) was designed in this study. Yaw angle estimation with magnetometers is disturbed by the perturbed magnetic field generated by coal rock structure and high-power equipment of shearer in automatic coal mining working face. Roll and pitch angles are estimated using the MEMS gyroscope and accelerometer, and the accuracy is not reliable with time. In order to eliminate the measurement error of the sensors and obtain the high-accuracy attitude estimation of the system, an unscented Kalman filter based on quaternion according to the characteristics of complementation of the magnetometer, accelerometer and gyroscope is applied to optimize the solution of sensor data. Then the gradient descent algorithm is used to optimize the key parameter of unscented Kalman filter, namely process noise covariance, to improve the accuracy of attitude calculation. Finally, an experiment and industrial application show that the average measurement error of yaw angle is less than 2° and that of pitch angle and roll angle is less than 1°, which proves the efficiency and feasibility of the proposed system and method.


2019 ◽  
Vol 11 (22) ◽  
pp. 2628 ◽  
Author(s):  
Liu ◽  
Li ◽  
Wang ◽  
Zhang

High precision positioning of UWB (ultra-wideband) in NLOS (non-line-of-sight) environment is one of the hot issues in the direction of indoor positioning. In this paper, a method of using a complementary Kalman filter (CKF) to fuse and filter UWB and IMU (inertial measurement unit) data and track the errors of variables such as position, speed, and direction is presented. Based on the uncertainty of magnetometer and acceleration, the noise covariance matrix of magnetometer and accelerometer is calculated dynamically, and then the weight of magnetometer data is set adaptively to correct the directional error of gyroscope. Based on the uncertainty of UWB distance observations, the covariance matrix of UWB measurement noise is calculated dynamically, and then the weight of UWB data observations is set adaptively to correct the position error. The position, velocity and direction errors are corrected by the fusion of UWB and IMU. The experimental results show that the algorithm can reduce the gyroscope deviation with magnetic noise and motion noise, so that the orientation estimates can be improved, as well as the positioning accuracy can be increased with UWB ranging noise.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhankui Zeng ◽  
Shijie Zhang ◽  
Yanjun Xing ◽  
Xibin Cao

Based on magnetometer and gyro measurement, a sequential scheme is proposed to determine the orbit and attitude of small satellite simultaneously. In order to reduce the impact of orbital errors on attitude estimation, a robust adaptive Kalman filter is developed. It uses a scale factor and an adaptive factor, which are constructed by Huber function and innovation sequence, respectively, to adjust the covariance matrix of system state and observational noise, change the weights of predicted and measured parameters, get suitable Kalman filter gain and approximate optimal filtering results. Numerical simulations are carried out and the proposed filter is approved to be robust for the noise disturbance and parameter uncertainty and can provide higher accuracy attitude estimation.


2012 ◽  
Vol 66 (1) ◽  
pp. 99-113 ◽  
Author(s):  
Wei Li ◽  
Jinling Wang

To improve the computational efficiency and dynamic performance of low cost Inertial Measurement Unit (IMU)/magnetometer integrated Attitude and Heading Reference Systems (AHRS), this paper has proposed an effective Adaptive Kalman Filter (AKF) with linear models; the filter gain is adaptively tuned according to the dynamic scale sensed by accelerometers. This proposed approach does not need to model the system angular motions, avoids the non-linear problem which is inherent in the existing methods, and considers the impact of the dynamic acceleration on the filter. The experimental results with real data have demonstrated that the proposed algorithm can maintain an accurate estimation of orientation, even under various dynamic operating conditions.


2015 ◽  
Vol 22 (4) ◽  
pp. 577-590 ◽  
Author(s):  
Mohamad Fakhari Mehrjardi ◽  
Hilmi Sanusi ◽  
Mohd. Alauddin Mohd. Ali

Abstract Estimation of satellite three-axis attitude using only one sensor data presents an interesting estimation problem. A flexible and mathematically effective filter for solving the satellite three-axis attitude estimation problem using two-axis magnetometer would be a challenging option for space missions which are suffering from other attitude sensors failure. Mostly, magnetometers are employed with other attitude sensors to resolve attitude estimation. However, by designing a computationally efficient discrete Kalman filter, full attitude estimation can profit by only two-axis magnetometer observations. The method suggested solves the problem of satellite attitude estimation using linear Kalman filter (LKF). Firstly, all models are generated and then the designed scenario is developed and evaluated with simulation results. The filter can achieve 10e-3 degree attitude accuracy or better on all three axes.


Sign in / Sign up

Export Citation Format

Share Document