scholarly journals Particle-Filter-Based WiFi-Aided Reduced Inertial Sensors Navigation System for Indoor and GPS-Denied Environments

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
M. M. Atia ◽  
M. J. Korenberg ◽  
A. Noureldin

Indoor navigation is challenging due to unavailability of satellites-based signals indoors. Inertial Navigation Systems (INSs) may be used as standalone navigation indoors. However, INS suffers from growing drifts without bounds due to error accumulation. On the other side, the IEEE 802.11 WLAN (WiFi) is widely adopted which prompted many researchers to use it to provide positioning indoors using fingerprinting. However, due to WiFi signal noise and multipath errors indoors, WiFi positioning is scattered and noisy. To benefit from both WiFi and inertial systems, in this paper, two major techniques are applied. First, a low-cost Reduced Inertial Sensors System (RISS) is integrated with WiFi to smooth the noisy scattered WiFi positioning and reduce RISS drifts. Second, a fast feature reduction technique is applied to fingerprinting to identify the WiFi access points with highest discrepancy power to be used for positioning. The RISS/WiFi system is implemented using a fast version of Mixture Particle Filter for state estimation as nonlinear non-Gaussian filtering algorithm. Real experiments showed that drifts of RISS are greatly reduced and the scattered noisy WiFi positioning is significantly smoothed. The proposed system provides smooth indoor positioning of 1 m accuracy 70% of the time outperforming each system individually.

Author(s):  
Wei Shi ◽  
Yang Wang ◽  
Yuanxin Wu

The foot-mounted inertial navigation system is an important application of pedestrian navigation as it in principle does not rely any external assistance. A real-time range decomposition constraint method is proposed in this paper to combine the information of dual foot-mounted inertial navigation systems. It is well known that low-cost inertial sensors with ZUPT (zero-velocity update) and range decomposition constraint perform better than in either single way. This paper recommends that the distance of separation between the position estimates of feet-mounted inertial navigation systems be restricted in the ellipsoidal constraint which relates to the maximum step and leg height. The performance of the proposed method is studied utilizing experimental data. The results indicate that the method can effectively correct the dual navigation systems’ position over the existing spherical constraint.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4910
Author(s):  
Xiaoqiao Yuan ◽  
Jie Li ◽  
Xi Zhang ◽  
Kaiqiang Feng ◽  
Xiaokai Wei ◽  
...  

Rotation modulation (RM) has been widely used in navigation systems to significantly improve the navigation accuracy of inertial navigation systems (INSs). However, the traditional single-axis rotation modulation cannot achieve the modulation of all the constant errors in the three directions; thus, it is not suitable for application in highly dynamic environments due to requirements for high precision in missiles. Aiming at the problems of error accumulation and divergence in the direction of rotation axis existing in the traditional single-axis rotation modulation, a novel rotation scheme is proposed. Firstly, the error propagation principle of the new rotation modulation scheme is analyzed. Secondly, the condition of realizing the error modulation with constant error is discussed. Finally, the original rotation modulation navigation algorithm is optimized for the new rotation modulation scheme. The experiment and simulation results show that the new rotation scheme can effectively modulate the error divergence of roll angle and improve the accuracy of roll angle by two orders of magnitude.


2020 ◽  
Author(s):  
Rogério P. Menezes Filho ◽  
Felipe O. Silva ◽  
Leonardo A. Vieira ◽  
Lucas P. S. Paiva ◽  
Gustavo S. Carvalho

Humans have always had the necessity of estimating their location in space for various reasons, e.g. hunting, traveling, sailing, battling, etc. Today, many other areas also demand that information, such as aviation, agriculture, multiple smartphone applications, law enforcement, and even film industry, to mention but a few. Estimating position and orientation is known as navigation, and the means to achieve it are called navigation systems. Each approach has its pros and cons, but sometimes it is possible to combine them into an improved architecture. For instance, inertial sensors (i.e. accelerometers and gyroscopes) can be integrated with magnetometers, producing an Attitude and Heading Reference System (AHRS); this process is referred to as sensor fusion. However, before sensors can be used to produce the navigation solution, calibration is often necessary, especially for low-cost devices. In this study,we perform the calibration of a triaxial consumer-grade magnetometer via an extended two-step methodology, correct small mistakes present in the original paper, and evaluate the technique in a restricted motion scenario. This technique can be implemented in-field, simply by rotating the sensors to multiple orientations; the only external information necessary is the local Earth's magnetic field density, easily estimated through reliable models. The error parameters, i.e. biases, scale factors, and misalignments, are indirectly estimated via a least squares algorithm. The calibration is first performed through software simulation, followed by hardware implementation to validate the results.


2018 ◽  
Vol 30 (6) ◽  
pp. 971-979 ◽  
Author(s):  
Toshihiro Maki ◽  
Yukiyasu Noguchi ◽  
Yoshinori Kuranaga ◽  
Kotohiro Masuda ◽  
Takashi Sakamaki ◽  
...  

This paper proposes a new method for cruising-type autonomous underwater vehicles (AUVs) to track rough seafloors at low altitudes while also maintaining a high surge velocity. Low altitudes are required for visual observation of the seafloor. The operation of AUVs at low altitudes and high surge velocities permits rapid seafloor imaging over a wide area. This method works without high-grade sensors, such as inertial navigation systems (INS), Doppler velocity logs (DVL), or multi-beam sonars, and it can be implemented in lightweight AUVs. The seafloor position is estimated based on a reflection intensity map defined on a vertical plane, using measurements from scanning sonar and basic sensors of depth, attitude, and surge velocity. Then, based on the potential method, a reference pitch angle is generated that allows the AUV to follow the seafloor at a constant altitude. This method was implemented in the AUV HATTORI, and a series of sea experiments were carried out to evaluate its performance. HATTORI (Highly Agile Terrain Tracker for Ocean Research and Investigation) is a lightweight and low-cost testbed designed for rapid and efficient imaging of rugged seafloors, such as those containing coral reefs. The vehicle succeeded in following a rocky terrain at an altitude of approximately 2 m with a surge velocity of approximately 0.8 m/s. This paper also presents the results of sea trials conducted at Ishigaki Island in 2017, where the vehicle succeeded in surveying the irregular, coral-covered seafloor.


2002 ◽  
Vol 55 (2) ◽  
pp. 225-240 ◽  
Author(s):  
Stephen Scott-Young ◽  
Allison Kealy

The increasing availability of small, low-cost GPS receivers has established a firm growth in the production of Location-Based Services (LBS). LBS, such as in-car navigation systems, are not necessarily reliant on high accuracy but a continuous positioning service. When available, the accuracy provided by the standard positioning service (SPS) of 30 metres, 95% of the time is often acceptable. The reality is, however, that GPS does not work in all situations, and it is therefore common to integrate GPS with additional sensors. The use of low-cost inertial sensors alone during GPS signal outage is severely restricted due to the accumulation of errors that is inherent with such dead reckoning (DR) systems. Through the integration of spatial information with real-time positioning sensors, intelligence can be added to the land mobile navigation solution. The information contained within a Geographical Information System (GIS) provides additional observations that can be used to improve the navigation result. With this approach, the solution is not dependent on the performance capabilities of the navigation sensors alone. This enables the use of lower accuracy navigation devices, allowing low-cost systems to provide a sustained, viable navigation solution despite long-term GPS outages. Practical results are presented comparing solutions obtained from a hand-held GPS receiver to a gyroscope and odometer.


Author(s):  
APURVA MEHTA ◽  
D. D. PUKALE ◽  
RADHIKA BHAGAT ◽  
RUJAL SHAH

In the past few years, a number of ideas have been proposed for indoor navigation systems. These ideas were not as widely implemented as outdoor positioning systems like GPS(Global Positioning Systems). We propose an indoor navigation assistance system using Bluetooth which is low cost and feasible to use in daily life. Our system enables users with handheld mobile devices to steer with ease through the indoor premises using the short range radio frequencies of Bluetooth. It also establishes user’s current location and the various paths leading to the destination. Dijkstra’s algorithm is used to determine the shortest path from the source to the required destination.


Sign in / Sign up

Export Citation Format

Share Document