scholarly journals Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. M. AbdElhady

Synthesis of chitosan/ZnO nanoparticles was performed using different concentrations of ZnO at different temperatures. Nanoparticles of ZnO/chitosan were prepared in rod form with average length 60 nm and average width 5–15 nm. Thus, obtained nanoparticles of ZnO/chitosan were characterized using UV spectrophotometer, FTIR, TEM, X-ray, and SEM. Size and shape of chitosan/ZnO nanoparticles relied on conditions of their synthesis. Notably, chitosan/ZnO in rod form with average length of 60 nm and average width 5–15 nm could be achieved. Application of chitosan/ZnO nanoparticles to cotton fabric conferred on the latter antibacterial and UV protection properties. Cotton fabric was characterized using SEM, ultraviolet protection factor (UPF) rating, and antibacterial (gram-positive and gram-negative) characteristics. Finished cotton fabric exhibited good antibacterial properties against gram-positive and gram-negative bacteria. The UV testes indicated a significant improvement in UV protection of finished cotton fabric which is increasing by increasing the concentration of nanoparticles of ZnO/chitosan.

2021 ◽  
Author(s):  
M.M. Abd El-Hady ◽  
A. Farouk ◽  
S. El-Sayed Saeed ◽  
S. Zaghloul

Abstract Medical textiles are one of the most rapidly growing parts of the technical textiles sector of the textile industry. This work was developed for biocompatible materials of curcumin / TiO2 nanocomposite fabricated on the surface of cotton fabric for medical applications. Cotton fabric was pretreated with three crosslinking agents namely, citric acid, Quat-188, and GPTMS. Applying nanocomposite on modified cotton fabric using pad-dry cure method. The chemistry and morphology of modified fabrics are examined by Fourier-transformed infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. In addition, the chemical mechanism for nanocomposite modified fabric was reported. UV protection (UPF) and antibacterial properties against Gram - positive S. aureus and Gram - negative E. coli bacterial strains were investigated. The durability of fabrics to 20 washing cycles was also examined. Results demonstrated that nanocomposite modified cotton fabric exhibited superior antibacterial activity against Gram - negative bacteria that Gram - positive bacteria and excellent UV protection properties. Moreover, good durability was obtained, possibly due to the effect of the crosslinker used. Among the three pre-modification of cotton fabric, Quat-188 modified fabric reveals the highest antibacterial activity comparing with citric acid or GPTMS modified fabrics. This outcome suggested that curcumin / TiO2 nanocomposite Quatt-188 modified cotton fabric could be used in biomedical textile as antibacterial properties.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4027
Author(s):  
M. M. Abd El-Hady ◽  
Asmaa Farouk ◽  
S. El-Sayed Saeed ◽  
Saad Zaghloul

Medical textiles are one of the most rapidly growing parts of the technical textiles sector in the textile industry. This work aims to investigate the medical applications of a curcumin/TiO2 nanocomposite fabricated on the surface of cotton fabric. The cotton fabric was pretreated with three crosslinking agents, namely citric acid, 3-Chloro-2-hydroxypropyl trimethyl ammonium chloride (Quat 188) and 3-glycidyloxypropyltrimethoxysilane (GPTMS), by applying the nanocomposite to the modified cotton fabric using the pad-dry-cure method. The chemistry and morphology of the modified fabrics were examined by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. In addition, the chemical mechanism for the nanocomposite-modified fabric was reported. UV protection (UPF) and antibacterial properties against Gram-positive S. aureus and Gram-negative E. coli bacterial strains were investigated. The durability of the fabrics to 20 washing cycles was also examined. Results demonstrated that the nanocomposite-modified cotton fabric exhibited superior antibacterial activity against Gram-negative bacteria than Gram-positive bacteria and excellent UV protection properties. Moreover, a good durability was obtained, which was possibly due to the effect of the crosslinker used. Among the three pre-modifications of the cotton fabric, Quat 188 modified fabric revealed the highest antibacterial activity compared with citric acid or GPTMS modified fabrics. This outcome suggested that the curcumin/TiO2 nanocomposite Quat 188-modified cotton fabric could be used as a biomedical textile due to its antibacterial properties.


2021 ◽  
pp. 004051752110018
Author(s):  
Mengmeng Li ◽  
Amjad Farooq ◽  
Shuai Jiang ◽  
Meiling Zhang ◽  
Hassan Mussana ◽  
...  

A simple impregnation method was employed to obtain functional cotton fabric based on a zinc oxide (ZnO) and cellulose nanocomposite. The cellulose nanofibril suspension was utilized to reduce the agglomeration of ZnO nanoparticles (ZnO NPs) and bind them to the surface of the fiber. Scanning electron microscopy and inductively coupled plasma mass spectrometry were used to confirm the presence of ZnO NPs on the surface of the fiber. The treated cotton fabrics exhibited high ultraviolet protection factor values, which were still higher than 50 even after 30 standard washing cycles. Furthermore, the treated samples showed a modest antibacterial effect due to the presence of ZnO NPs. Meanwhile, the treated cotton fabrics showed a decrease (less than 30%) in air permeability.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Javed Sheikh ◽  
M. D. Teli

In the current study, an acrylic acid grafted bamboo rayon fabric was utilized as a substrate to immobilize ZnO nanoparticles. The bamboo rayon-ZnO nanoparticles composite was prepared by the treatment of swollen grafted fabric with ZnCl2 followed by conversion of Zn2+ ions into ZnO nanoparticles. The modified product was characterized and then evaluated for antibacterial activity against gram-positive and gram-negative bacteria as well as durability of their antibacterial activity after washing. The product showed antibacterial activity against both types of bacteria which was found to be durable till 40 washes. The modified material also showed improved UV protection. The product can be claimed as semidurable multifunctional textile material.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Khaled S. Al-Athel ◽  
Najat Marraiki ◽  
Abul Fazal M. Arif ◽  
Syed Sohail Akhtar ◽  
Javad Mostaghimi ◽  
...  

In this work, 316L stainless steel samples were coated with copper (Cu) and German silver (Cu 17%Ni 10%Zn) to investigate the relation between their mechanical and antibacterial behaviors. The mechanical and material characteristics of the samples were studied by looking into the microstructure of the surface and the cross-section of the coatings, the surface roughness, and the adhesion strength between the coating layer and the substrate. The antibacterial behavior is then studied against gram-negative Escherichia coli and gram-positive Staphylococcus aureus. Two experiments were conducted to examine the antibacterial behavior. In the first experiment, the coated samples were covered with distilled water, whereas in the second experiment, the samples were tested without being covered with distilled water. The results show that German silver (Cu 17%Ni 10%Zn) had a higher antibacterial rate than copper (Cu) by around 10% for both gram-negative E. coli and gram-positive S. aureus. The reason is because a smoother surface is expected to limit the bacterial adhesion in most cases, and the German silver samples have a lower surface roughness (Ra) due to the higher thermal expansion value of zinc (Zn) compared with copper (Cu). A more in-depth look into the effect of various thickness of the coating with alloying elements (in this case nickel and zinc) on the antibacterial rate would be of great interest.


2016 ◽  
Vol 34 (2) ◽  
pp. 35
Author(s):  
Prayna P. P. Maharaj ◽  
Riteshma Devi ◽  
Surendra Prasad

Fiji is highly populated with plants containing essential oils (EO). The essential oils extracted from the leaves of the selected Fijian leafy plants were screened against two Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis). The agar diffusion method was used to examine the antimicrobial activities of the extracted EO. All the EO tested showed antibacterial properties against one or more strains while none of the EO was active against Pseudomonas aeruginosa. Viburnum lantana (Wayfaring tree), Annona muricata (Soursop), Coleus amboinicus (Spanish thyme) and Cinnamomum zeylancium (Cinnamon) showed good inhibition against both Gram-positive and Gram-negative bacteria and proved as worthy source of antimicrobial agent. These findings will help the Pacific population to use the studied plants leaves as antimicrobial agent.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
José Carlos Vilar Junior ◽  
Daylin Rubio Ribeaux ◽  
Carlos Alberto Alves da Silva ◽  
Galba Maria De Campos-Takaki

This research aims to study the production of chitosan from shrimp shell (Litopenaeus vannamei) of waste origin using two chemical methodologies involving demineralization, deproteinization, and the degree of deacetylation. The evaluation of the quality of chitosan from waste shrimp shells includes parameters for the yield, physical chemistry characteristics by infrared spectroscopy (FT-IR), the degree of deacetylation, and antibacterial activity. The results showed (by Method 1) extraction yields for chitin of 33% and for chitosan of 49% and a 76% degree of deacetylation. Chitosan obtained by Method 2 was more efficient: chitin (36%) and chitosan (63%), with a high degree of deacetylation (81.7%). The antibacterial activity was tested against Gram-negative bacteria (Stenotrophomonas maltophiliaandEnterobacter cloacae) and Gram-positiveBacillus subtilisand the Minimum Inhibitory Concentrations (MIC) and the Minimum Bactericidal Concentration (MBC) were determined. Method 2 showed that extracted chitosan has good antimicrobial potential against Gram-positive and Gram-negative bacteria and that the process is viable.


Sign in / Sign up

Export Citation Format

Share Document