scholarly journals CD4+T Cells: Differentiation and Functions

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Rishi Vishal Luckheeram ◽  
Rui Zhou ◽  
Asha Devi Verma ◽  
Bing Xia

CD4+T cells are crucial in achieving a regulated effective immune response to pathogens. Naive CD4+T cells are activated after interaction with antigen-MHC complex and differentiate into specific subtypes depending mainly on the cytokine milieu of the microenvironment. Besides the classical T-helper 1 and T-helper 2, other subsets have been identified, including T-helper 17, regulatory T cell, follicular helper T cell, and T-helper 9, each with a characteristic cytokine profile. For a particular phenotype to be differentiated, a set of cytokine signaling pathways coupled with activation of lineage-specific transcription factors and epigenetic modifications at appropriate genes are required. The effector functions of these cells are mediated by the cytokines secreted by the differentiated cells. This paper will focus on the cytokine-signaling and the network of transcription factors responsible for the differentiation of naive CD4+T cells.

Author(s):  
Amania A. Sheikh ◽  
Joanna R. Groom

Abstract During viral infection, immune cells coordinate the induction of inflammatory responses that clear infection and humoral responses that promote protection. CD4+ T-cell differentiation sits at the center of this axis. Differentiation toward T-helper 1 (Th1) cells mediates inflammation and pathogen clearance, while T follicular helper (Tfh) cells facilitate germinal center (GC) reactions for the generation of high-affinity antibodies and immune memory. While Th1 and Tfh differentiation occurs in parallel, these CD4+ T-cell identities are mutually exclusive, and progression toward these ends is determined via the upregulation of T-bet and Bcl6, respectively. These lineage-defining transcription factors act in concert with multiple networks of transcriptional regulators that tip the T-bet and Bcl6 axis in CD4+ T-cell progenitors to either a Th1 or Tfh fate. It is now clear that these transcriptional networks are guided by cytokine cues that are not only varied between distinct viral infections but also dynamically altered throughout the duration of infection. Thus, multiple intrinsic and extrinsic factors combine to specify the fate, plasticity, and function of Th1 and Tfh cells during infection. Here, we review the current information on the mode of action of the lineage-defining transcription factors Bcl6 and T-bet and how they act individually and in complex to govern CD4+ T-cell ontogeny. Furthermore, we outline the multifaceted transcriptional regulatory networks that act upstream and downstream of Bcl6 and T-bet to tip the differentiation equilibrium toward either a Tfh or Th1 fate and how these are impacted by dynamic inflammatory cues.


2021 ◽  
Author(s):  
Cory J. Knudson ◽  
Maria Férez ◽  
Pedro Alves-Peixoto ◽  
Dan A. Erkes ◽  
Carolina R. Melo-Silva ◽  
...  

Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in anti-viral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. Here we demonstrate that not only ECTV but also vaccinia virus and Lymphocytic Choriomeningitis virus induce CD4-CTL, but that the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that Major Histocompatibility Complex Class II molecules on CD11c + cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that anti-viral CD4-CTL and non-cytolytic T Helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment; and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors suggesting that further post-transcriptional regulation is required for CD4-CTL differentiation. Finally, using CRISPR-Cas9 deletion of Runx3 in CD4 T cells, we demonstrate that the development of CD4-CTL but not of classical Th1 CD4 T cells requires Runx3 following ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of post-transcriptionally regulated Runx3 in this process. IMPORTANCE While it is well established that cytotoxic CD4 T cells (CD4-CTL) directly contribute to viral clearance, it remains unclear how CD4-CTL are induced. We now show that CD4-CTL require sustained antigen presentation and are induced by CD11c-expressing antigen presenting cells. Moreover, we show that CD4-CTL are derived from the terminal differentiation of classical T helper 1 (Th1) subset of CD4 cells. Compared to Th1 cells, CD4-CTL upregulate protein levels of the transcription factors ThPOK, Runx3 and GATA-3 post-transcriptionally. Deletion of Runx3 in differentiated CD4 T cells prevents CD4-CTL but not of classical Th1 cells. These results advance our knowledge of how CD4-CTL are induced during viral infection.


2019 ◽  
Vol 10 ◽  
Author(s):  
Rebeca Hid Cadena ◽  
Rosanne D. Reitsema ◽  
Minke G. Huitema ◽  
Yannick van Sleen ◽  
Kornelis S. M. van der Geest ◽  
...  

2010 ◽  
Vol 298 (5) ◽  
pp. L670-L677 ◽  
Author(s):  
Lei Cao ◽  
Jinxia Wang ◽  
Yingchun Zhu ◽  
Irene Tseu ◽  
Martin Post

Prenatal exposures to immunogenic stimuli, such as bacterial LPS, have shown to influence the neonatal immune system and lung function. However, no detailed analysis of the immunomodulatory effects of LPS on postnatal T helper cell differentiation has been performed. Using a rat model, we investigated the effect of prenatal LPS exposure on postnatal T cell differentiation and experimental allergic airway disease. Pregnant rats were injected with LPS on day 20 and 21 (term = 22 days). Some of the offspring were sensitized and challenged with ovalbumin. Positive control animals were placebo exposed to saline instead of LPS, whereas negative controls were sensitized with saline. Expression of T cell-related transcription factors and cytokines was quantified in the lung, and airway hyperresponsiveness was measured. Prenatal LPS exposure induced a T helper 1 (TH1) immune milieu in the offspring of rats [i.e., increased T-bet and TH1 cytokine expression while expression of TH2-associated transcription factors (GATA3 and STAT6) and cytokines was decreased]. Prenatal LPS exposure did not trigger TH17 cell differentiation in the offspring. Furthermore, prenatal LPS exposure reduced ovalbumin-induced (TH2-mediated) airway inflammation, eosinophilia, and airway responsiveness. Thus, in utero exposure to endotoxin promotes a TH1 immune environment, which suppresses the development of allergic airway disease later in life.


2020 ◽  
Vol 117 (32) ◽  
pp. 19408-19414 ◽  
Author(s):  
Michael P. Crawford ◽  
Sushmita Sinha ◽  
Pranav S. Renavikar ◽  
Nicholas Borcherding ◽  
Nitin J. Karandikar

Untoward effector CD4+ T cell responses are kept in check by immune regulatory mechanisms mediated by CD4+ and CD8+ T cells. CD4+ T helper 17 (Th17) cells, characterized by IL-17 production, play important roles in the pathogenesis of autoimmune diseases (such as arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, among others) and in the host response to infection and cancer. Here, we demonstrate that human CD4+ T cells cells exposed to a Th17-differentiating milieu are significantly more resistant to immune suppression by CD8+ T cells compared to control Th0 cells. This resistance is mediated, in part, through the action of IL-17A, IL-17F, and IL-17AF heterodimer through their receptors (IL-17RA and IL-17RC) on CD4+ T cells themselves, but not through their action on CD8+ T cells or APC. We further show that IL-17 can directly act on non-Th17 effector CD4+ T cells to induce suppressive resistance, and this resistance can be reversed by blockade of IL-1β, IL-6, or STAT3. These studies reveal a role for IL-17 cytokines in mediating CD4-intrinsic immune resistance. The pathways induced in this process may serve as a critical target for future investigation and immunotherapeutic intervention.


2010 ◽  
Vol 82 (4) ◽  
pp. 698-705 ◽  
Author(s):  
Jenny Mjösberg ◽  
Göran Berg ◽  
Maria C. Jenmalm ◽  
Jan Ernerudh

2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Junghwa Lee ◽  
Masao Hashimoto ◽  
Se Jin Im ◽  
Koichi Araki ◽  
Hyun-Tak Jin ◽  
...  

ABSTRACT Adenovirus serotype 5 (Ad5) is one of the most widely used viral vectors and is known to generate potent T cell responses. While many previous studies have characterized Ad5-induced CD8 T cell responses, there is a relative lack of detailed studies that have analyzed CD4 T cells elicited by Ad5 vaccination. Here, we immunized mice with Ad5 vectors encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) and examined GP-specific CD4 T cell responses elicited by Ad5 vectors and compared them to those induced by an acute LCMV infection. In contrast to LCMV infection, where balanced CD4 T helper 1 (Th1) and T follicular helper (Tfh) responses were induced, Ad5 immunization resulted in a significantly reduced frequency of Th1 cells. CD4 T cells elicited by Ad5 vectors expressed decreased levels of Th1 markers, such as Tim3, SLAM, T-bet, and Ly6C, had smaller amounts of cytotoxic molecules like granzyme B, and produced less interferon gamma than CD4 T cells induced by LCMV infection. This defective CD4 Th1 response appeared to be intrinsic for Ad5 vectors and not a reflection of comparing a nonreplicating vector to a live viral infection, since immunization with a DNA vector expressing LCMV-GP generated efficient CD4 Th1 responses. Analysis at early time points (day 3 or 4) after immunization with Ad5 vectors revealed a defect in the expression of CD25 (interleukin-2 [IL-2] receptor alpha chain) on Ad5-elicited CD4 T cells, and administration of exogenous IL-2 following Ad5 immunization partially restored CD4 Th1 responses. These results suggest that impairment of Th1 commitment after Ad5 immunization could be due to reduced IL-2-mediated signaling. IMPORTANCE During viral infection, generating balanced responses of Th1 and Tfh cells is important to induce effective cell-mediated responses and provide optimal help for antibody responses. In this study, to investigate vaccine-induced CD4 T cell responses, we characterized CD4 T cells after immunization with Ad5 vectors expressing LCMV-GP in mice. Ad5 vectors led to altered effector differentiation of LCMV GP-specific CD4 T cells compared to that during LCMV infection. CD4 T cells following Ad5 immunization exhibited impaired Th1 lineage commitment, generating significantly decreased Th1 responses than those induced by LCMV infection. Our results suggest that suboptimal IL-2 signaling possibly plays a role in reduced Th1 development following Ad5 immunization.


2017 ◽  
Vol 114 (48) ◽  
pp. 12797-12802 ◽  
Author(s):  
A. Ripamonti ◽  
E. Provasi ◽  
M. Lorenzo ◽  
M. De Simone ◽  
V. Ranzani ◽  
...  

Follicular helper T cells (TFHs) are a key component of adaptive immune responses as they help antibody production by B cells. Differentiation and function of TFH cells are controlled by the master gene BCL6, but it is largely unclear how this transcription repressor specifies the TFH program. Here we asked whether BCL6 controlled helper function through down-regulation of specific microRNAs (miRNAs). We first assessed miRNA expression in TFH cells and defined a TFH-specific miRNA signature. We report that hsa–miR-31–5p (miR-31) is down-regulated in TFH; we showed that BCL6 suppresses miR-31 expression by binding to its promoter; and we demonstrated that miR-31 inhibits the expression of molecules that control T-helper function, such as CD40L and SAP. These findings identify a BCL6-initiated inhibitory circuit that stabilizes the follicular helper T cell program at least in part through the control of miRNA transcription. Although BCL6 controls TFH activity in human and mouse, the role of miR-31 is restricted to human TFH cell differentiation, reflecting a species specificity of the miR-31 action. Our findings highlight miR-31 as a possible target to modulate human T cell dependent antibody responses in the settings of infection, vaccination, or immune dysregulation.


1998 ◽  
Vol 90 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Guillermo H. Giambartolomei ◽  
Barbara L. Lasater ◽  
François Villinger ◽  
Vida A. Dennis
Keyword(s):  
T Cells ◽  
T Cell ◽  
T Helper ◽  

2011 ◽  
Vol 5 (09) ◽  
pp. 640-645 ◽  
Author(s):  
Mario Milco D'Elios ◽  
Marisa Benagiano ◽  
Chiara Della Bella ◽  
Amedeo Amedei

T-cell responses are crucial for the outcome of any infection. The type of effector T-cell reaction is determined by a complex interaction of antigen-presenting cells with naive T cells and involves genetic and environmental factors, including the type of antigen, cytokines, chemokines, co-stimulatory molecules, and signalling cascades. The decision for the immune response to go in a certain direction is based not on one signal alone, but rather on many different elements acting both synergistically and antagonistically, and through feedback loops leading to activation or inhibition of T cells. In the course of evolution different types of T cells have developed, such as T helper 1 (Th1) cells, which protect against intracellular bacteria; Th2 cells, which play a role against parasites; and Th17 cells, which face extracellular bacteria and fungi


Sign in / Sign up

Export Citation Format

Share Document