scholarly journals Overview on Multipattern and Multipolarization Antennas for Aerospace and Terrestrial Applications

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Aixin Chen ◽  
Weiwei Jiang ◽  
Zhizhang Chen ◽  
Jiaheng Wang

In recent years, reconfigurable antennas, with the ability to radiate wave in more than one pattern and polarization, play a great role in modern telecommunication systems. Compared with conventional antennas, multipattern and multipolarization antennas have more advantages and better prospects. They can be used to improve system gain and security, satisfy system requirements, avoid noisy environment, and adapt to the environment flexibly. This paper discusses different patterns and polarizations of reconfigurable antennas according to current research work in this area. In the opinion of this paper, the radiation pattern states of antennas include beam direction, shape, and gain. The polarization states of antennas include horizontal/vertical linear, ±slant 45° linear, left-hand or right-hand circular polarized. Different multipattern and multipolarization antennas with various structures and working mechanisms are compared and discussed. Multipattern and multipolarization antennas have been well applied for aerospace and terrestrial applications, such as dynamic scenarios, adaptive beam scanning, and multiple-input-multiple-output (MIMO) systems.

2014 ◽  
Vol 696 ◽  
pp. 183-190
Author(s):  
Yue Heng Li ◽  
Ming Hao Fu ◽  
Li Wang ◽  
Mei Yan Ju ◽  
Ping Huang

This paper focuses its research work on the capacity and outage performances of a distributed multiple-input multiple-output (DMIMO) system in a multi-cell environment. For this purpose, the multi-cell DMIMO structure is modeled first, and based on this model, the so-called blanket communication and selective communication schemes are compared, and the formula of the output signal to interference plus noise ratio (SINR) of the above two schemes are given to illustrate the way of an inter-cell interference affecting the system performance. Then the expressions of the average capacity and outage probability are derived by using the probability density function (PDF) of the output SINR in the preferred selective communication scheme with some necessary approximations. Finally, the computer simulations are provided to explore the possible rule of upper layer network scheduling in overcoming the inter-cell interferences and in optimizing the capacity and outage performances in the DMIMO systems.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Author(s):  
Hong Son Vu ◽  
Kien Truong ◽  
Minh Thuy Le

<p>Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced.</p>


Author(s):  
Elsadig Saeid ◽  
Varun Jeoti ◽  
Brahim Belhaouari Samir

Future Wireless Networks are expected to adopt multi-user multiple input multiple output (MU-MIMO) systems whose performance is maximized by making use of precoding at the transmitter. This chapter describes the recent advances in precoding design for MU-MIMO and introduces a new technique to improve the precoder performance. Without claiming to be comprehensive, the chapter gives deep introduction on basic MIMO techniques covering the basics of single user multiple input multiple output (SU-MIMO) links, its capacity, various transmission strategies, SU-MIMO link precoding, and MIMO receiver structures. After the introduction, MU-MIMO system model is defined and maximum achievable rate regions for both MU-MIMO broadcast and MU-MIMO multiple access channels are explained. It is followed by critical literature review on linear precoding design for MU-MIMO broadcast channel. This paves the way for introducing an improved technique of precoding design that is followed by its performance evaluation.


2019 ◽  
Vol 9 (21) ◽  
pp. 4624
Author(s):  
Uzokboy Ummatov ◽  
Kyungchun Lee

This paper proposes an adaptive threshold-aided K-best sphere decoding (AKSD) algorithm for large multiple-input multiple-output systems. In the proposed scheme, to reduce the average number of visited nodes compared to the conventional K-best sphere decoding (KSD), the threshold for retaining the nodes is adaptively determined at each layer of the tree. Specifically, we calculate the adaptive threshold based on the signal-to-noise ratio and index of the layer. The ratio between the first and second smallest accumulated path metrics at each layer is also exploited to determine the threshold value. In each layer, in addition to the K paths associated with the smallest path metrics, we also retain the paths whose path metrics are within the threshold from the Kth smallest path metric. The simulation results show that the proposed AKSD provides nearly the same bit error rate performance as the conventional KSD scheme while achieving a significant reduction in the average number of visited nodes, especially at high signal-to-noise ratios.


2018 ◽  
Vol 39 (2) ◽  
pp. 107
Author(s):  
Victor Croisfelt Rodrigues ◽  
Taufik Abrão

The demand for higher data rates can be satisfied by the spectral efficiency (SE) improvement offered by Massive multiple-input multiple-output (M-MIMO) systems. However, the pilot contamination remains as a fundamental issue to obtain the paramount SE in such systems. This propitiated the research of several methods to mitigate pilot contamination. One of these procedures is based on the coordination of the cells, culminating in proposals with multiple pilot training phases. This paper aims to expand the results of the original paper, whereby the concepts of large pilot training phases were offered. The evaluation of such method was conducted through more comprehensible numerical results, in which a large number of antennas were assumed and more rigorous SE expressions were used. The channel estimation approaches relying on multiple pilot training phases were considered cumbersome for implementation and an uninteresting solution to overcome pilot contamination; contradicting the results presented in the genuine paper.


2020 ◽  
Vol 10 (19) ◽  
pp. 6809
Author(s):  
Hyun-Sun Hwang ◽  
Jae-Hyun Ro ◽  
Young-Hwan You ◽  
Duckdong Hwang ◽  
Hyoung-Kyu Song

A number of requirements for 5G mobile communication are satisfied by adopting multi-user multiple input multiple output (MU-MIMO) systems. The inter user interference (IUI) which is an inevitable problem in MU-MIMO systems becomes controllable when the precoding scheme is used. The proposed scheme, which is one of the precoding schemes, is built on regularized block diagonalization (RBD) precoding and utilizes the partial nulling concept, which is to leave part of the IUI at the same time. Diversity gain is obtained by leaving IUI, which is made by choosing the row vectors of the channel matrix that are not nullified. Since the criterion for choosing the row vectors of the channel is the power of the channel, the number of selected row vectors of the channel for each device can be unfair. The proposed scheme achieves performance enhancement by obtaining diversity gain. Therefore, the bit error rate (BER) performance is better and the computational complexity is lower than RBD when the same data rate is achieved. When the number of reduced data streams is not enough for most devices to achieve diversity gain, the proposed scheme has better performance compared to generalized block diagonalization (GBD). The low complexity at the receiver is achieved compared to GBD by using the simple way to remove IUI.


2013 ◽  
Vol 347-350 ◽  
pp. 3478-3481
Author(s):  
Li Liu ◽  
Jin Kuan Wang ◽  
Xin Song ◽  
Yin Hua Han ◽  
Yu Huan Wang

Maximum likelihood (ML) detection algorithm for multiple input multiple output (MIMO) systems provided the best bit error rate (BER) performance with heavy calculating complexity. The use of QR decomposition with M-algorithm (QRD-M) had been proposed to provide near-ML detection performance and lower calculating complexity. However, its complexity still grew exponentially with increasing dimension of the transmitted signal. To reduce the problem, an improved detection scheme was proposed here. After constructing the tree detecting model of MIMO systems, the ML search of one layer was done, the branch metrics were calculated and sorted, which gave an ordered set of the layer, then depth-first search were used to search the left layers with termination methods. The proposed algorithm provides near QRD-M detection performance.


Sign in / Sign up

Export Citation Format

Share Document