scholarly journals Characterization andIn VivoBiological Performance of Biosilicate

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ana Claudia M. Renno ◽  
Paulo Sérgio Bossini ◽  
Murilo C. Crovace ◽  
Ana Candida M. Rodrigues ◽  
Edgar Dutra Zanotto ◽  
...  

After an introduction showing the growing interest in glasses and glass-ceramics as biomaterials used for bone healing, we describe a new biomaterial named Biosilicate. Biosilicate is the designation of a group of fully crystallized glass-ceramics of the Na2O-CaO-SiO2-P2O5system. Severalin vitrotests have shown that Biosilicate is a very active biomaterial and that the HCA layer is formed in less than 24 hours of exposure to “simulated body fluid” (SBF) solution. Also,in vitrostudies with osteoblastic cells have shown that Biosilicate disks supported significantly larger areas of calcified matrix compared to 45S5 Bioglass, indicating that this bioactive glass-ceramic may promote enhancement ofin vitrobone-like tissue formation in osteogenic cell cultures. Finally, due to its special characteristics, Biosilicate has also been successfully tested in severalin vivostudies. These studies revealed that the material is biocompatible, presents excellent bioactive properties, and is effective to stimulate the deposition of newly formed bone in animal models. All these data highlight the huge potential of Biosilicate to be used in bone regeneration applications.

2009 ◽  
Vol 1243 ◽  
Author(s):  
Jorge López-Cuevas ◽  
Martín I. Pech-Canul ◽  
Juan C. Rendón-Angeles ◽  
José L. Rodríguez-Galicia ◽  
Carlos A. Gutiérrez-Chavarría

ABSTRACTGlass-ceramics based on hypo-eutectic (GC1) and hyper-eutectic (GC2) compositions of the Wollastonite (W, CaSiO3) - Tricalcium Phosphate [TCP, Ca3(PO4)2] binary system, which are saturated with SiO2 during the glass melting stage, are synthesized by the petrurgic method, using cooling rates of 0.5, 1 or 2°C/h. All synthesized materials are subjected to in vitro bioactivity tests using Kokubo's Simulated Body Fluid (SBF). Primary a-Cristobalite is formed in all cases. Metastable Apatite [Ap, Ca10(PO4)6O] and W phases are additionally formed, in general, in the GC1 glass-ceramics, as well as in the GC2 material obtained at a cooling rate of 0.5°C/h. However, at faster cooling rates, TCP is formed instead of Ap phase in the latter composition. During the bioactivity tests, a hydroxyapatite [HAp, Ca10(PO4)6(OH)2]-like surface layer is formed in all materials. It is proposed that GC2 glass-ceramics cooled at a rate of 1°C/h have the potential to show good in vivo osseointegration properties.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Lucas Souza ◽  
João Henrique Lopes ◽  
Davi Encarnação ◽  
Italo Odone Mazali ◽  
Richard Alan Martin ◽  
...  

2007 ◽  
Vol 336-338 ◽  
pp. 1545-1548
Author(s):  
Lin Luo ◽  
Guang Fu Yin ◽  
Yun Zhang ◽  
Ya Dong Yao ◽  
Wei Zhong Yang ◽  
...  

Porous biodegradable scaffolds are widely used in bone tissue engineering to provide temporary templates for cellular attachment and matrix synthesis. Ideally, the degradation rate in vivo may be similar or slightly less than that of tissue formation, allowing for the maintenance of the scaffold structure and the mechanical support during early stages of tissue formation. Eventually, the 3-D spaces occupied by the porous scaffolds will be replaced by newly formed tissue. In this work, β-tricalcium phosphate/Poly-L lactide (β-TCP/PLLA) scaffolds with different proportions of β-TCP to PLLA were investigated. The effects of β-TCP proportions on degradation rate and mechanical strengths of the scaffolds were evaluated in simulated body fluid (SBF) at 37°C up to 42 days. Results show that: different proportions of β-TCP to PLLA have significant influence on degradation behaviors of the scaffolds, and mechanical strengths of the scaffolds with weight proportion of β-TCP to PLLA being 2 to 1 are much higher than those of the others during the degradation period. And in this period, the scaffolds biodegrade slowly, and Hydroxyl Carbonate Apatite (HCA) forms in the surface of the material.


2022 ◽  
Vol 12 (2) ◽  
pp. 411-416
Author(s):  
Liang Tang ◽  
Si-Yu Zhao ◽  
Ya-Dong Yang ◽  
Geng Yang ◽  
Wen-Yuan Zhang ◽  
...  

To investigate the degradation, mechanical properties, and histocompatibility of weft-knitted silk mesh-like grafts, we carried out the In Vitro and In Vivo silk grafts degradation assay. The In Vitro degradation experiment was performed by immersing the silk grafts in simulated body fluid for 1 year, and the results showed that the degradation rate of the silk mesh-like grafts was very slow, and there were few changes in the mechanical properties and quality of the silk mesh-like graft. In Vivo degradation assay was taken by implantation of the silk mesh-like grafts into the subcutaneous muscles of rabbits. At 3, 6, and 12 months postoperation, the rate of mass loss was 19.36%, 31.84%, and 58.77%, respectively, and the maximum load was 63.85%, 34.63%, and 10.76%, respectively of that prior to degradation. The results showed that the degradation rate of the silk graft and the loss of mechanical properties In Vivo were faster than the results obtained in the In Vitro experiments. In addition, there were no significant differences in secretion of serum IL-6 and TNF-α between the experimental and normal rabbits (P >0.05), suggesting no obvious inflammatory reaction. The findings suggest that the weft-knitted silk mesh-like grafts have good mechanical properties, histocompatibility, and In Vivo degradation rate, and therefore represent a candidate material for artificial ligament


2005 ◽  
Vol 284-286 ◽  
pp. 11-14 ◽  
Author(s):  
Yang Leng ◽  
Ren Long Xin ◽  
Ji Yong Chen

Bioactive calcium phosphate (Ca-P) formation in bioceramics surfaces in simulated body fluid (SBF) and in rabbit muscle sites was investigated. The examined bioceamics included most commonly used bioglass®, A-W glass-ceramics and calcium phosphates in orthopedic and dental applications. The Ca-P cyrstal structures were examined with single crystal diffraction patterns in transmission electron microscopy, which reduced possibility of misidentifying Ca-P phases. The experimental results show that capability of Ca-P formation considerably varied among bioceramics, particularly in vivo. Octacalcium phosphate (OCP) was revealed on the all types of bioceramics in vitro and in vivo experiments. This work leads us to rethink how to evaluate bioactivity of bioceramics and other orthopedic materials which exhibit capability of osteoconduction by forming direct bonding with bone.


1993 ◽  
Vol 8 (1) ◽  
pp. 41-46 ◽  
Author(s):  
C. G. Olthof ◽  
P. M. J. M. de Vries ◽  
P. M. Kouw ◽  
P. L. Oe ◽  
H. Schneider ◽  
...  

2013 ◽  
Vol 34 (5) ◽  
pp. 1078-1084 ◽  
Author(s):  
Eun-Kyung Kim ◽  
Hyun-Jung Oh ◽  
Yon-Suk Kim ◽  
Jin-Woo Hwang ◽  
Chang-Bum Ahn ◽  
...  

2006 ◽  
Vol 309-311 ◽  
pp. 289-292
Author(s):  
Ruth D. Goodridge ◽  
Chikara Ohtsuki ◽  
Masanobu Kamitakahara ◽  
David J. Wood ◽  
Kenny W. Dalgarno

The feasibility of processing glass-ceramics using the layer manufacturing technique, selective laser sintering (SLS), to produce parts with suitable biological and mechanical properties for use in bone replacement applications, has been investigated. Glass-ceramics derived from glasses based on several different systems have been considered. Initial experiments using an apatite-mullite glass-ceramic (4.5SiO2⋅3Al203⋅1.6P2O5⋅3CaO⋅2CaF2) demonstrated the ability to process glass-ceramic materials using this technique, creating parts with a strength similar to that of cancellous bone, and a porous structure that was shown in vivo to be suitable for the ingrowth of bone. Concerns over the inability of the apatite-mullite material to form an apatite layer on its surface when soaked in a simulated body fluid (SBF) has led to the development of Al2O3-free glasses based on the systems (50-x)CaO⋅45SiO2⋅5P2O5⋅xCaF2 and (48-x)CaO⋅45SiO2⋅5P2O5⋅2CaF2⋅xNa2O. These materials have demonstrated good in vitro bioactivity, and therefore have good potential as candidates for processing by an indirect SLS method for the production of custom-made bone implants.


Sign in / Sign up

Export Citation Format

Share Document