scholarly journals Antifungal Applications of Ag-Decorated Hydroxyapatite Nanoparticles

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
C. A. Zamperini ◽  
R. S. André ◽  
V. M. Longo ◽  
E. G. Mima ◽  
C. E. Vergani ◽  
...  

Pure hydroxyapatite (HA) and hydroxyapatite decorated with silver (HA@Ag) nanoparticles were synthesized and characterized. The antifungal effect of HA@Ag nanoparticles in a distilled water solution was evaluated againstCandida albicans. The origin of the antifungal activity of the HA@Ag is also discussed. The results obtained showed that the HA nanorod morphology remained the same with Ag ions decorations on the HA structure which were deposited in the form of nanospheres. Interaction where occurred between the structure and its defect density variation in the interfacial HA@Ag and intrafacial HA region with the fungal medium resulted in antifungal activity. The reaction mechanisms involved oxygen and water adsorption which formed an active complex cluster. The decomposition and desorption of the final products as well as the electron/hole recombination process have an important role in fungicidal effects.

1998 ◽  
Vol 536 ◽  
Author(s):  
H. Porteanu ◽  
A. Glozman ◽  
E. Lifshitz ◽  
A. Eychmüller ◽  
H. Weller

AbstractCdS/HgS/CdS nanoparticles consist of a CdS core, epitaxially covered by one or two monolayers of HgS and additional cladding layers of CdS. The present paper describes our efforts to identify the influence of CdS/HgS/CdS interfaces on the localization of the photogenerated carriers deduced from the magneto-optical properties of the materials. These were investigated by the utilization of optically detected magnetic resonance (ODMR) and double-beam photoluminescence spectroscopy. A photoluminescence (PL) spectrum of the studied material, consists of a dominant exciton located at the HgS layer, and additional non-excitonic band, presumably corresponding to the recombination of trapped carriers at the interface. The latter band can be attenuated using an additional red excitation. The ODMR measurements show the existence of two kinds of electron-hole recombination. These electron-hole pairs maybe trapped either at a twin packing of a CdS/HgS interface, or at an edge dislocation of an epitaxial HgS or a CdS cladding layer.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 123-130 ◽  
Author(s):  
S. Malato ◽  
J. Blanco ◽  
C. Richter ◽  
B. Milow ◽  
M. I. Maldonado

Particulate suspensions of TiO2 irradiated with natural solar tight in a large experimental plant catalyse the oxidation of organic contaminants. The problem in using TiO2 as a photocatalyst is electron/hole recombination. One strategy for inhibiting e−/h+ recombination is to add other (irreversible) electron acceptors to the reaction. In many highly toxic waste waters where degradation of organic pollutants is the major concern, the addition of an inorganic anion to enhance the organic degradation rate may be justified. For better results, these additives should fulfil the following criteria: dissociate into harmless by-products and lead to the formation of ·OH or other oxidising agents. In this paper, we attempt to demonstrate the optimum conditions for the treatment of commercial pesticide rinsates found in the wastewater produced by a pesticide container recycling plant. The experiments were performed in one of the pilot plants of the largest solar photocatalytic system in Europe, the Detoxification Plants of the Plataforma Solar de Almería (PSA), in Spain. After testing ten different commercial pesticides, results show that peroxydisulphate enhances the photocatalytic miniralization of all of them. This study is part of an extensive project focused on the design of a solar photocatalytic plant for decontamination of agricultural rinsates in Almería (Spain).


2011 ◽  
Vol 8 (1) ◽  
pp. 201-210
Author(s):  
R.M. Bogdanov

The problem of determining the repair sections of the main oil pipeline is solved, basing on the classification of images using distance functions and the clustering principle, The criteria characterizing the cluster are determined by certain given values, based on a comparison with which the defect is assigned to a given cluster, procedures for the redistribution of defects in cluster zones are provided, and the cluster zones parameters are being changed. Calculations are demonstrating the range of defect density variation depending on pipeline sections and the universal capabilities of linear objects configuration with arbitrary density, provided by cluster analysis.


2021 ◽  
Vol 22 (14) ◽  
pp. 7715
Author(s):  
Grzegorz Czernel ◽  
Dominika Bloch ◽  
Arkadiusz Matwijczuk ◽  
Jolanta Cieśla ◽  
Monika Kędzierska-Matysek ◽  
...  

Silver nanoparticles (AgNPs) were synthesized using aqueous honey solutions with a concentration of 2%, 10%, and 20%—AgNPs-H2, AgNPs-H10, and AgNPs-H20. The reaction was conducted at 35 °C and 70 °C. Additionally, nanoparticles obtained with the citrate method (AgNPs-C), while amphotericin B (AmB) and fluconazole were used as controls. The presence and physicochemical properties of AgNPs was affirmed by analyzing the sample with ultraviolet–visible (UV–Vis) and fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The 20% honey solution caused an inhibition of the synthesis of nanoparticles at 35 °C. The antifungal activity of the AgNPs was evaluated using opportunistic human fungal pathogens Candida albicans and Candida parapsilosis. The antifungal effect was determined by the minimum inhibitory concentration (MIC) and disc diffusion assay. The highest activity in the MIC tests was observed in the AgNPs-H2 variant. AgNPs-H10 and AgNPs-H20 showed no activity or even stimulated fungal growth. The results of the Kirby–Bauer disc diffusion susceptibility test for C. parapsilosis strains indicated stronger antifungal activity of AgNPs-H than fluconazole. The study demonstrated that the antifungal activity of AgNPs is closely related to the concentration of honey used for the synthesis thereof.


2010 ◽  
Vol 12 (4) ◽  
pp. 53-57 ◽  
Author(s):  
Agata Markowska-Szczupak ◽  
Krzysztof Ulfig ◽  
Barbara Grzmil ◽  
Antoni Morawski

A preliminary study on antifungal effect of TiO2-based paints in natural indoor light The antifungal activity of four commercial photocatalytic paints (KEIM Ecosil ME, Titanium FA, Photo Silicate and Silicate D) in natural indoor light was investigated. The paints contained TiO2 in rutile and anatase crystalline forms as evidenced by means of the X-ray diffraction analysis. In most cases the paints inhibited growth of fungi viz. Trichoderma viride, Aspergillus niger, Coonemeria crustacea, Eurotium herbariorum, and Dactylomyces sp. The KEIM Ecosil ME paint displayed the highest antifungal effect in the light, which could be explained with the highest anatase content. The paint antifungal activity and the fungal sensitivity to the TiO2-mediated photocatalytic reaction both decreased in the following orders: KEIM Ecosil ME > Titanium FA > Photo Silicate > Silicate D and T. viride > Dactylomyces sp. > A. niger > E. herbariorum.


Sign in / Sign up

Export Citation Format

Share Document