scholarly journals Branching Fractions andCPAsymmetries ofB→K0*1430ρωandB→K0*1430ϕDecays in the Family NonuniversalZ′Model

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Li ◽  
En-Lei Wang ◽  
Hong-Yan Zhang

Within the QCD factorization framework, we investigate the branching fractions and the directCPasymmetries of decaysB→K0*1430ρωandB→K0*1430ϕunder two different scenarios in the standard model and the family nonuniversalZ′model. We find that the annihilation terms play crucial roles in these decays and lead to the major uncertainties. For decaysB-→K0*-1430ρ0ω, the newZ′boson could change the branching fractions remarkably. However, for other decays, its contribution might be clouded by large uncertainties from annihilations. Unfortunately, neither the standard model nor theZ′model can reproduce all experimental data simultaneously under one certain scenario. We also noted that the directCPasymmetries ofB-→K0*-1430ρ0ωcould be used to identify theK0*1430meson and search for the contribution of newZ′boson.

Particles ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 193-207
Author(s):  
Mikhail A. Ivanov ◽  
Jürgen G. Körner ◽  
Pietro Santorelli ◽  
Chien-Thang Tran

Measurements of the branching fractions of the semileptonic decays B → D ( * ) τ ν ¯ τ and B c → J / ψ τ ν ¯ τ systematically exceed the Standard Model predictions, pointing to possible signals of new physics that can violate lepton flavor universality. The unknown origin of new physics realized in these channels can be probed using a general effective Hamiltonian constructed from four-fermion operators and the corresponding Wilson coefficients. Previously, constraints on these Wilson coefficients were obtained mainly from the experimental data for the branching fractions. Meanwhile, polarization observables were only theoretically studied. The situation has changed with more experimental data having become available, particularly those regarding the polarization of the tau and the D * meson. In this study, we discuss the implications of the new data on the overall picture. We then include them in an updated fit of the Wilson coefficients using all hadronic form factors from our covariant constituent quark model. The use of our form factors provides an analysis independent of those in the literature. Several new-physics scenarios are studied with the corresponding theoretical predictions provided, which are useful for future experimental studies. In particular, we find that under the one-dominant-operator assumption, no operator survives at 1 σ . Moreover, the scalar operators O S L and O S R are ruled out at 2 σ if one uses the constraint B ( B c → τ ν τ ) ≤ 10 % , while the more relaxed constraint B ( B c → τ ν τ ) ≤ 30 % still allows these operators at 2 σ , but only minimally. The inclusion of the new data for the D * polarization fraction F L D * reduces the likelihood of the right-handed vector operator O V R and significantly constrains the tensor operator O T L . Specifically, the F L D * alone rules out O T L at 1 σ . Finally, we show that the longitudinal polarization P L τ of the tau in the decays B → D * τ ν ¯ τ and B c → J / ψ τ ν ¯ τ is extremely sensitive to the tensor operator. Within the 2 σ allowed region, the best-fit value T L = 0.04 + i 0.17 predicts P L τ ( D * ) = − 0.33 and P L τ ( J / ψ ) = − 0.34 , which are at about 33% larger than the Standard Model (SM) prediction P L τ ( D * ) = − 0.50 and P L τ ( J / ψ ) = − 0.51 .


2014 ◽  
Vol 35 ◽  
pp. 1460440
Author(s):  
ALBERTO LUSIANI

We report recent measurements on τ leptons obtained by the BABAR collaboration using the entire recorded sample of electron-positron collisions at and around the Υ(4S) (about 470fb-1). The events were recorded at the PEP-II asymmetric collider at the SLAC National Accelerator Laboratory. The measurements include high multiplicity τ decay branching fractions with 3 or 5 charged particles in the final state, a search for the second class current the τ decay τ → πη′ν, τ branching fractions into final states containing two KS mesons, [Formula: see text], with h = π, K, and preliminary measurements of hadronic spectra of τ decays with three hadrons (τ- → h-h+h-ντ decays, where h = π, K). The results improve the experimental knowledge of the τ lepton properties and can be used to improve the precision tests of the Standard Model.


2013 ◽  
Vol 22 (03) ◽  
pp. 1330006 ◽  
Author(s):  
Z. J. AJALTOUNI ◽  
E. DI SALVO

This review paper stresses the possible connection between time-reversal violation and new physics processes beyond the standard model. In particular, this violation is proposed as an alternative to CP violation in the search for such unkown processes. Emphasis is put on the weak decays of heavy hadrons, especially beauty ones. Specific methods for extracting useful parameters from experimental data are elaborated in order to test TR symmetry. These methods could be used successfully in the analysis of the LHC data.


2019 ◽  
Vol 64 (8) ◽  
pp. 714
Author(s):  
T. V. Obikhod ◽  
I. A. Petrenko

The problems of the Standard Model, as well as questions related to Higgs boson properties led to the need to model the ttH associated production and the Higgs boson decay to a top quark pair within the MSSM model. With the help of computer programs MadGraph, Pythia, and Delphes and using the latest kinematic cuts taken from experimental data obtained at the LHC, we have predicted the masses of MSSM Higgs bosons, A and H.


2008 ◽  
Vol 23 (21) ◽  
pp. 3282-3289 ◽  
Author(s):  
XIAO-GANG HE

The Standard Model for CP violation, the CKM model, works very well in explaining all laboratory experimental data. However, this model does not address the question that where it comes from. The origin of CP violation is still a mystery. In this talk I discuss a model1 addressing this problem in which the CP violating phase in the CKM matrix is identical to the phase in the Higgs potential resulting from spontaneous CP violation.


2003 ◽  
Vol 18 (24) ◽  
pp. 4403-4441 ◽  
Author(s):  
L. V. LAPERASHVILI ◽  
D. A. RYZHIKH ◽  
H. B. NIELSEN

Considering our (3+1)-dimensional space–time as, in some way, discrete or lattice with a parameter a = λP, where λP is the Planck length, we have investigated the additional contributions of lattice artifact monopoles to beta functions of the renormalization group equations for the running fine structure constants αi(μ) (i = 1,2,3 correspond to the U(1), SU(2) and SU(3) gauge groups of the Standard Model) in the Family Replicated Gauge Group Model (FRGGM) which is an extension of the Standard Model at high energies. It was shown that monopoles have N fam times smaller magnetic charge in FRGGM than in SM (N fam is the number of families in FRGGM). We have estimated also the enlargement of a number of fermions in FRGGM leading to the suppression of the asymptotic freedom in the non-Abelian theory. We have shown that, in contrast to the case of anti-GUT when the FRGGM undergoes the breakdown at μ = μG ~ 1018 GeV , we have the possibility of unification if the FRGGM-breakdown occurs at μG ~ 1014 GeV . By numerical calculations we obtained an example of the unification of all gauge interactions (including gravity) at the scale μ GUT ≈ 1018.4 GeV . We discussed the possibility of [ SU (5)]3 or [ SO (10)]3 (SUSY or not SUSY) unifications.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Christoph Bobeth ◽  
Marzia Bordone ◽  
Nico Gubernari ◽  
Martin Jung ◽  
Danny van Dyk

AbstractWe analyze in detail the angular distributions in $${\bar{B}}\rightarrow D^*\ell {{\bar{\nu }}}$$ B ¯ → D ∗ ℓ ν ¯ decays, with a focus on lepton-flavour non-universality. We investigate the minimal number of angular observables that fully describes current and upcoming datasets, and explore their sensitivity to physics beyond the Standard Model (BSM) in the most general weak effective theory. We apply our findings to the current datasets, extract the non-redundant set of angular observables from the data, and compare to precise SM predictions that include lepton-flavour universality violating mass effects. Our analysis shows that the number of independent angular observables that can be inferred from current experimental data is limited to only four. These are insufficient to extract the full set of relevant BSM parameters. We uncover a $$\sim 4\sigma $$ ∼ 4 σ tension between data and predictions that is hidden in the redundant presentation of the Belle 2018 data on $${\bar{B}}\rightarrow D^*\ell {{\bar{\nu }}}$$ B ¯ → D ∗ ℓ ν ¯ decays. This tension specifically involves observables that probe $$e-\mu $$ e - μ lepton-flavour universality. However, we find inconsistencies in these data, which renders results based on it suspicious. Nevertheless, we discuss which generic BSM scenarios could explain the tension, in the case that the inconsistencies do not affect the data materially. Our findings highlight that $$e-\mu $$ e - μ non-universality in the SM, introduced by the finite muon mass, is already significant in a subset of angular observables with respect to the experimental precision.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050223
Author(s):  
V. V. Vien

In this work, we suggest a renormalizable [Formula: see text] extension of the Standard Model with [Formula: see text] symmetry in which the observed fermion mass and mixing pattern is consistent with the experimental values given in Ref. 1 at the tree-level. The neutrino mass ordering and the tiny neutrino masses are induced by the type-I seesaw mechanism. The effective neutrino mass parameters are predicted to be [Formula: see text], [Formula: see text] for NO and [Formula: see text], [Formula: see text] for IO which are well consistent with the recent experimental data. The quark masses are in good agreement while the quark mixing matrix has a little difference with the experimental data taken from Ref. 1 and the Cabibbo angle [Formula: see text] is related to the model parameter [Formula: see text] by the formula [Formula: see text].


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3366-3371 ◽  
Author(s):  
W-Y. PAUCHY HWANG

These days we learn that, in our Universe, the dark matter occupies about 25% of the content, compared to only 5% of the "visible" ordinary matter. We propose that the description of the dark matter would be an extension of the Standard Model - a gauge theory. We all know that in the Standard Model we have three generations but still don't know why - the so-called "family problem". On other hand, in view of the masses and oscillations, the neutrinos now present some basic difficulty in the Standard Model. In this note, I propose that on top of the SUc(3)×, SU(2) × U(1) standard model there is an SUf(3) extension - a simple SUc(3) × SU(2) × U(1) × SUf(3) extended standard model. The family gauge bosons (familons) are massive through the so-called "colored" Higgs mechanism while the remaining Higgs particles are also massive. The three neutrinos, the electron-like, muon-like, and tao-like neutrinos, form the basic family triplets. Hopefully all the couplings to the "visible" matter are through the neutrinos, explaining why the dark matter is more than the visible matter in our Universe.


2002 ◽  
Vol 17 (05) ◽  
pp. 261-268 ◽  
Author(s):  
CHONGXING YUE ◽  
YUANBEN DAI ◽  
HONG LI

Motivated by the 3.2σ(1.4σ) deviations between the recent experimental value for [Formula: see text] and the standard model (SM) prediction, we examine the effect of new physics (NP) on the [Formula: see text] couplings [Formula: see text] and [Formula: see text]. First we focus our attention on the dynamical models. Then, using effective Lagrangian techniques, we discuss the corrections of NP to [Formula: see text] and [Formula: see text]. We find some kinds of NP which might explain the recently experimental data about Rb and [Formula: see text]. However, the free parameters of these kinds of NP must be severely constrained.


Sign in / Sign up

Export Citation Format

Share Document