scholarly journals Endoplasmic Reticulum Stress and Parkinson’s Disease: The Role of HRD1 in Averting Apoptosis in Neurodegenerative Disease

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tomohiro Omura ◽  
Masayuki Kaneko ◽  
Yasunobu Okuma ◽  
Kazuo Matsubara ◽  
Yasuyuki Nomura

Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of various diseases, particularly neurodegenerative disorders such as Parkinson’s disease (PD). We previously identified the human ubiquitin ligase HRD1 that is associated with protection against ER stress and its associated apoptosis. HRD1 promotes the ubiquitination and degradation of Parkin-associated endothelin receptor-like receptor (Pael-R), an ER stress inducer and causative factor of familial PD, thereby preventing Pael-R-induced neuronal cell death. Moreover, upregulation of HRD1 by the antiepileptic drug zonisamide suppresses 6-hydroxydopamine-induced neuronal cell death. We review recent progress in the studies on the mechanism of ER stress-induced neuronal death related to PD, particularly focusing on the involvement of HRD1 in the prevention of neuronal death as well as a potential therapeutic approach for PD based on the upregulation of HRD1.

2021 ◽  
Vol 14 ◽  
Author(s):  
Tomohiro Omura ◽  
Luna Nomura ◽  
Ran Watanabe ◽  
Hiroki Nishiguchi ◽  
Kazuhiro Yamamoto ◽  
...  

Endoplasmic reticulum (ER) stress has been reported as a cause of Parkinson’s disease (PD). We have previously reported that the ubiquitin ligase HMG-CoA reductase degradation 1 (HRD1) and its stabilizing factor suppressor/enhancer lin-12-like (SEL1L) participate in the ER stress. In addition, we recently demonstrated that neuronal cell death is enhanced in the cellular PD model when SEL1L expression is suppressed compared with cell death when HRD1 expression is suppressed. This finding suggests that SEL1L is a critical key molecule in the strategy for PD therapy. Thus, investigation into whether microRNAs (miRNAs) regulate SEL1L expression in neurons should be interesting because relationships between miRNAs and the development of neurological diseases such as PD have been reported in recent years. In this study, using miRNA databases and previous reports, we searched for miRNAs that could regulate SEL1L expression and examined the effects of this regulation on cell death in PD models created by 6-hydroxydopamine (6-OHDA). Five miRNAs were identified as candidate miRNAs that could modulate SEL1L expression. Next, SH-SY5Y cells were exposed to 6-OHDA, following which miR-101 expression was found to be inversely correlated with SEL1L expression. Therefore, we selected miR-101 as a candidate miRNA for SEL1L modulation. We confirmed that miR-101 directly targets the SEL1L 3′ untranslated region, and an miR-101 mimic suppressed the 6-OHDA–induced increase in SEL1L expression and enhanced cell death. Furthermore, an miR-101 inhibitor suppressed this response. These results suggest that miR-101 regulates SEL1L expression and may serve as a new target for PD therapy.


PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0240448
Author(s):  
Maho Kubota ◽  
Nahoko Kobayashi ◽  
Toshifumi Sugizaki ◽  
Mikako Shimoda ◽  
Masahiro Kawahara ◽  
...  

2017 ◽  
Vol 27 (23) ◽  
pp. 5207-5212 ◽  
Author(s):  
Sang Min Kim ◽  
Yong Joo Park ◽  
Myoung-Sook Shin ◽  
Ha-Ryong Kim ◽  
Min Jae Kim ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 361
Author(s):  
Gabriel Gonzalez ◽  
Jiří Grúz ◽  
Cosimo Walter D’Acunto ◽  
Petr Kaňovský ◽  
Miroslav Strnad

Cytokinins are adenine-based phytohormones that regulate key processes in plants, such as cell division and differentiation, root and shoot growth, apical dominance, branching, and seed germination. In preliminary studies, they have also shown protective activities against human neurodegenerative diseases. To extend knowledge of the protection (protective activity) they offer, we investigated activities of natural cytokinins against salsolinol (SAL)-induced toxicity (a Parkinson’s disease model) and glutamate (Glu)-induced death of neuron-like dopaminergic SH-SY5Y cells. We found that kinetin-3-glucoside, cis-zeatin riboside, and N6-isopentenyladenosine were active in the SAL-induced PD model. In addition, trans-, cis-zeatin, and kinetin along with the iron chelator deferoxamine (DFO) and the necroptosis inhibitor necrostatin 1 (NEC-1) significantly reduced cell death rates in the Glu-induced model. Lactate dehydrogenase assays revealed that the cytokinins provided lower neuroprotective activity than DFO and NEC-1. Moreover, they reduced apoptotic caspase-3/7 activities less strongly than DFO. However, the cytokinins had very similar effects to DFO and NEC-1 on superoxide radical production. Overall, they showed protective activity in the SAL-induced model of parkinsonian neuronal cell death and Glu-induced model of oxidative damage mainly by reduction of oxidative stress.


2006 ◽  
Vol 0 (0) ◽  
pp. 070209222715077-??? ◽  
Author(s):  
Sandrine Bretaud ◽  
Claire Allen ◽  
Phillip W. Ingham ◽  
Oliver Bandmann

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jade Heejae Ko ◽  
Ju-Hee Lee ◽  
Bobin Choi ◽  
Ju-Yeon Park ◽  
Young-Won Kwon ◽  
...  

Parkinson’s disease is a neurodegenerative disease characterized by progressive cell death of dopaminergic neuron and following neurological disorders. Gagam-Sipjeondaebo-Tang (GST) is a novel herbal formula made of twelve medicinal herbs derived from Sipjeondaebo-Tang, which has been broadly used in a traditional herbal medicine. In the present study, we investigated the effects of GST against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor abnormalities in mice and 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in SH-SY5Y cell. First, we found that GST alleviated motor dysfunction induced by MPTP, and the result showed dopaminergic neurons recovery in substantia nigra. In the cell experiment, pretreatment with GST increased the cell viability and attenuated apoptotic cell death in MPP+-treated SH-SY5Y cells. GST also inhibited reactive oxygen species production and restored the mitochondrial membrane potential loss, which were induced by MPP+. Furthermore, GST extract significantly activated ERK and Akt, cell survival-related proteins, in SH-SY5Y cells. The effect of GST preventing mitochondrial dysfunction was antagonized by pretreatment of PD98059 and LY294002, selective inhibitors of ERK and Akt, respectively. Taken together, GST alleviated abnormal motor functions and recovered neuronal cell death, mitochondrial dysfunction, possibly via ERK and Akt activation. Therefore, we suggest that GST may be a candidate for the treatment and prevention of Parkinson’s disease.


2003 ◽  
Vol 23 (10) ◽  
pp. 1117-1128 ◽  
Author(s):  
Takeshi Hayashi ◽  
Atsushi Saito ◽  
Shuzo Okuno ◽  
Michel Ferrand-Drake ◽  
Robert L Dodd ◽  
...  

The endoplasmic reticulum (ER), which plays important roles in apoptosis, is susceptible to oxidative stress. Because reactive oxygen species (ROS) are robustly produced in the ischemic brain, ER damage by ROS may be implicated in ischemic neuronal cell death. We induced global brain ischemia on wild-type and copper/zinc superoxide dismutase (SOD1) transgenic rats and compared ER stress and neuronal damage. Phosphorylated forms of eukaryotic initiation factor 2α (eIF2α) and RNA-dependent protein kinase-like ER eIF2α kinase (PERK), both of which play active roles in apoptosis, were increased in hippocampal CA1 neurons after ischemia but to a lesser degree in the transgenic animals. This finding, together with the finding that the transgenic animals showed decreased neuronal degeneration, indicates that oxidative ER damage is involved in ischemic neuronal cell death. To elucidate the mechanisms of ER damage by ROS, we analyzed glucose-regulated protein 78 (GRP78) binding with PERK and oxidative ER protein modification. The proteins were oxidatively modified and stagnated in the ER lumen, and GRP78 was detached from PERK by ischemia, all of which were attenuated by SOD1 overexpression. We propose that ROS attack and modify ER proteins and elicit ER stress response, which results in neuronal cell death.


Sign in / Sign up

Export Citation Format

Share Document