scholarly journals Conditioned Media from Adipose-Tissue-Derived Mesenchymal Stem Cells Downregulate Degradative Mediators Induced by Interleukin-1βin Osteoarthritic Chondrocytes

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Julia Platas ◽  
Maria Isabel Guillén ◽  
María Dolores Pérez del Caz ◽  
Francisco Gomar ◽  
Vicente Mirabet ◽  
...  

Osteoarthritis (OA) is the most frequent joint disorder and an important cause of disability. Recent studies have shown the potential of adipose-tissue-derived mesenchymal stem cells (AD-MSC) for cartilage repair. We have investigated whether conditioned medium from AD-MSC (CM) may regulate in OA chondrocytes a number of key mediators involved in cartilage degeneration. CM enhanced type II collagen expression in OA chondrocytes while decreasing matrix metalloproteinase (MMP) activity in cell supernatants as well as the levels of MMP-3 and MMP-13 proteins and mRNA in OA chondrocytes stimulated with interleukin- (IL-) 1β. In addition, CM increased IL-10 levels and counteracted the stimulating effects of IL-1βon the production of tumor necrosis factor-α, IL-6, prostaglandin E2, and NO measured as nitrite and the mRNA expression of these cytokines, CCL-2, CCL-3, CCL-4, CCL-5, CCL-8, CCL-19, CCL-20, CXCL-1, CXCL-2, CXCL-3, CXCL-5, CXCL-8, cyclooxygenase-2, microsomal prostaglandin E synthase-1, and inducible NO synthase. These effects may be dependent on the inhibition of nuclear factor-κB activation by CM. Our data demonstrate the chondroprotective actions of CM and provide support for further studies of this approach in joint disease.

2018 ◽  
Vol 47 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Miguel Tofiño-Vian ◽  
Maria Isabel Guillén ◽  
María Dolores Pérez del Caz ◽  
Antonio Silvestre ◽  
María José Alcaraz

Background/Aims: Chronic inflammation contributes to cartilage degeneration during the progression of osteoarthritis (OA). Adipose tissue-derived mesenchymal stem cells (AD-MSC) show great potential to treat inflammatory and degradative processes in OA and have demonstrated paracrine effects in chondrocytes. In the present work, we have isolated and characterized the extracellular vesicles from human AD-MSC to investigate their role in the chondroprotective actions of these cells. Methods: AD-MSC were isolated by collagenase treatment from adipose tissue from healthy individuals subjected to abdominal lipectomy surgery. Microvesicles and exosomes were obtained from conditioned medium by filtration and differential centrifugation. Chondrocytes from OA patients were used in primary culture and stimulated with 10 ng/ml interleukin(IL)-1β in the presence or absence of AD-MSC microvesicles, exosomes or conditioned medium. Protein expression was investigated by ELISA and immunofluorescence, transcription factor-DNA binding by ELISA, gene expression by real-time PCR, prostaglandin E2 (PGE2) by radioimmunoassay, and matrix metalloproteinase (MMP) activity and nitric oxide (NO) production by fluorometry. Results: In OA chondrocytes stimulated with IL-1β, microvesicles and exosomes reduced the production of inflammatory mediators tumor necrosis factor-α, IL-6, PGE2 and NO. The downregulation of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 would lead to the decreased PGE2 production while the effect on NO could depend on the reduction of inducible nitric oxide synthase expression. Treatment of OA chondrocytes with extracellular vesicles also decreased the release of MMP activity and MMP-13 expression whereas the production of the anti-inflammatory cytokine IL-10 and the expression of collagen II were significantly enhanced. The reduction of inflammatory and catabolic mediators could be the consequence of a lower activation of nuclear factor-κB and activator protein-1. The upregulation of annexin A1 specially in MV may contribute to the anti-inflammatory and chondroprotective effects of AD-MSC. Conclusions: Our data support the interest of AD-MSC extracellular vesicles to develop new therapeutic approaches in joint conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Safwat Adel Abdo Moqbel ◽  
Yuzhe He ◽  
Langhai Xu ◽  
Chiyuan Ma ◽  
Jisheng Ran ◽  
...  

As a joint disease, osteoarthritis (OA) is caused by the breakdown of subchondral bone and cartilage damage. Inflammatory factors, such as interleukin- (IL-) 1β, mediate the progression of OA. Madecassoside (MA), a triterpenoid component derived from the gotu kola herb (Centella asiatica), exhibits various pharmacological effects, including antioxidative and anti-inflammatory properties. In the present study, the protective effects and possible mechanism of MA on the treatment of OA were investigated. MA was demonstrated to significantly suppress the IL-1β-induced overexpression of matrix metalloproteinase- (MMP-) 3, MMP-13, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) and to decrease the IL-1β-induced degradation of type II collagen and sox9. Additionally, MA was able to reduce the IL-1β-induced phosphorylation of p65 in osteoarthritic chondrocytes. Furthermore, in a rat OA model, MA prevented cartilage degeneration and reduced the OARSI score in the MA-treated group compared with the OA group. The present study showed that MA suppresses the nuclear factor-κB signaling pathway, reducing IL-1β-induced chondrocyte inflammation, which indicates the therapeutic potential of MA in patients with OA.


2020 ◽  
Vol 21 (10) ◽  
pp. 3589 ◽  
Author(s):  
Daiki Murata ◽  
Ryota Fujimoto ◽  
Koichi Nakayama

Osteoarthritis (OA) is a major joint disease that promotes locomotor deficiency during the middle- to old-age, with the associated disability potentially decreasing quality of life. Recently, surgical strategies to reconstruct both articular cartilage and subchondral bone for OA have been diligently investigated for restoring joint structure and function. Adipose tissue-derived mesenchymal stem cells (AT-MSCs), which maintain pluripotency and self-proliferation ability, have recently received attention as a useful tool to regenerate osteocartilage for OA. In this review, several studies were described related to AT-MSC spheroids, with scaffold and scaffold-free three-dimensional (3D) constructs produced using “mold” or “Kenzan” methods for osteochondral regeneration. First, several examples of articular cartilage regeneration using AT-MSCs were introduced. Second, studies of osteochondral regeneration (not only cartilage but also subchondral bone) using AT-MSCs were described. Third, examples were presented wherein spheroids were produced using AT-MSCs for cartilage regeneration. Fourth, osteochondral regeneration following autologous implantation of AT-MSC scaffold-free 3D constructs, fabricated using the “mold” or “Kenzan” method, was considered. Finally, prospects of osteochondral regeneration by scaffold-free 3D constructs using AT-MSC spheroids were discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Eliane Antonioli ◽  
Carla A. Piccinato ◽  
Helena B. Nader ◽  
Moisés Cohen ◽  
Anna Carla Goldberg ◽  
...  

Bone marrow mesenchymal stem cells (BM-MSCs) are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA), anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures). There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCsper secould be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring.


2014 ◽  
Vol 9 (6) ◽  
pp. 497-503 ◽  
Author(s):  
Sarah Broeckx ◽  
Marc Suls ◽  
Charlotte Beerts ◽  
Aurelie Vandenberghe ◽  
Bert Seys ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Shamsul Bin Sulaiman ◽  
Shiplu Roy Chowdhury ◽  
Mohd Fauzi Bin Mh Busra ◽  
Rizal Bin Abdul Rani ◽  
Nor Hamdan Bin Mohamad Yahaya ◽  
...  

The tissue engineering approach in osteoarthritic cell therapy often requires the delivery of a substantially high cell number due to the low engraftment efficiency as a result of low affinity binding of implanted cells to the targeted tissue. A modification towards the cell membrane that provides specific epitope for antibody binding to a target tissue may be a plausible solution to increase engraftment. In this study, we intercalated palmitated protein G (PPG) with mesenchymal stem cells (MSCs) and antibody, and evaluated their effects on the properties of MSCs either in monolayer state or in a 3D culture state (gelatin microsphere, GM). Bone marrow MSCs were intercalated with PPG (PPG-MSCs), followed by coating with type II collagen antibody (PPG-MSC-Ab). The effect of PPG and antibody conjugation on the MSC proliferation and multilineage differentiation capabilities both in monolayer and GM cultures was evaluated. PPG did not affect MSC proliferation and differentiation either in monolayer or 3D culture. The PPG-MSCs were successfully conjugated with the type II collagen antibody. Both PPG-MSCs with and without antibody conjugation did not alter MSC proliferation, stemness, and the collagen, aggrecan, and sGAG expression profiles. Assessment of the osteochondral defect explant revealed that the PPG-MSC-Ab micromass was able to attach within 48 h onto the osteochondral surface. Antibody-conjugated MSCs in GM culture is a potential method for targeted delivery of MSCs in future therapy of cartilage defects and osteoarthritis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2021 ◽  
Vol 22 (3) ◽  
pp. 1375
Author(s):  
María Carmen Carceller ◽  
María Isabel Guillén ◽  
María Luisa Gil ◽  
María José Alcaraz

Adipose tissue represents an abundant source of mesenchymal stem cells (MSC) for therapeutic purposes. Previous studies have demonstrated the anti-inflammatory potential of adipose tissue-derived MSC (ASC). Extracellular vesicles (EV) present in the conditioned medium (CM) have been shown to mediate the cytoprotective effects of human ASC secretome. Nevertheless, the role of EV in the anti-inflammatory effects of mouse-derived ASC is not known. The current study has investigated the influence of mouse-derived ASC CM and its fractions on the response of mouse-derived peritoneal macrophages against lipopolysaccharide (LPS). CM and its soluble fraction reduced the release of pro-inflammatory cytokines, adenosine triphosphate and nitric oxide in stimulated cells. They also enhanced the migration of neutrophils or monocytes, in the absence or presence of LPS, respectively, which is likely related to the presence of chemokines, and reduced the phagocytic response. The anti-inflammatory effect of CM may be dependent on the regulation of toll-like receptor 4 expression and nuclear factor-κB activation. Our results demonstrate the anti-inflammatory effects of mouse-derived ASC secretome in mouse-derived peritoneal macrophages stimulated with LPS and show that they are not mediated by EV.


Sign in / Sign up

Export Citation Format

Share Document