scholarly journals XPS-Characterization of Heterometallic Coordination Compounds with Optically Active Ligands

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yenny Ávila-Torres ◽  
Lázaro Huerta ◽  
Noráh Barba-Behrens

The heterometallic optical complexes [Cu2Co(S,S(+)cpse)3(H2O)3]·4H2O (1) and [Cu2Ni(S,S(+)cpse)3(H2O)3]·10H2O (2) were obtained from the mononuclear copper(II) compound by the addition of nickel(II) or cobalt(II) chlorides, where (H2cpse) is the acetyl amino alcohol derivative N-[2-hydroxy-1(R)-methyl-2(R)-phenylethyl]-N-methylglycine. In comparison with the homotrinuclear copper(II) compound [Cu3(S,S(+)cpse)3(H2O)3]·8H2O reported previously, the substitution of a copper(II) atom by one cobalt(II) ion gave place to a heterotrinuclear compound1, which presents ferromagnetic-antiferromagnetic behaviour. When substituting a copper(II) by a nickel(II) ion, the trinuclear compound2showed an antiferromagnetic coupling. The magnetic behaviour of the heterotrinuclear compounds is driven by the nature of the metal ion which was introduced in the copper(II) triangular array. The ligand and its coordination compounds were characterized by IR, UV-Vis-NIR. Their chemical was confirmed by photoelectron spectroscopy (XPS).

2012 ◽  
Vol 512-515 ◽  
pp. 971-974
Author(s):  
Jian Yi ◽  
Xiao Dong He ◽  
Yue Sun ◽  
Zhi Peng Xie ◽  
Wei Jiang Xue ◽  
...  

The sp3C doped SiC superhard nanocomposite films had been deposited on stainless steel (SS) substrates at different temperature by electron beam-physical vapor deposition (EB-PVD). The sp3C doped SiC film was studied by grazing incidence X-ray asymmetry diffraction (GIAXD), and X-ray photoelectron spectroscopy (XPS). The results of GIAXD showed that the sp3 doped SiC nanocomposite films were not perfect crystalline, which was composed with fine SiC nanocrystals, and a second phase very similar with diamond like carbon (DLC). XPS analysis showed that the excess C existing in films and turned from diamond into DLC from the surface to inner of film.


1990 ◽  
Vol 180 ◽  
Author(s):  
Gaetano Granozzi ◽  
Antonella Glisenti ◽  
Gian D. Soraru

ABSTRACTPolymer precursors for Si-C, Si-Ti-C-O and Si-Al-C-O systems have been obtained from polycarbosilane and the corresponding metal alkoxides. X-ray Photoelectron Spectroscopy (XPS) has been used to follow the structural evolution of these preceramic compounds during the pyrolysis process.


2015 ◽  
Vol 1770 ◽  
pp. 19-24 ◽  
Author(s):  
Gordon J. Grzybowski ◽  
Arnold Kiefer ◽  
Bruce Claflin

ABSTRACTInterest in next generation devices that integrate photonic and electronic functionality is focused on extending the capability of existing group IV material systems while maintaining compatibility with existing processing methods and procedures. One such class of materials which has been recently developed, Ge1-x-ySixSny ternary alloys, is being investigated for integrated Si photonics, solar cell materials, telecommunication applications, and for IR photodetectors. These alloys afford the opportunity to decouple the band gap energies and lattice constants over a wide range of values, potentially yielding direct and indirect character that can be coupled with a variety of different substrates dependent on composition.In the present work, we report X-ray photoelectron spectroscopy (XPS) characterization of Ge1-x-ySixSny alloys grown by gas-source molecular beam epitaxy (GS-MBE) and investigate Ni- Ge1-x-ySiySny bilayer reactions with x-ray diffraction (XRD). The surface oxidation of samples stored in ambient conditions were measured with XPS. High resolution spectra showed chemical shifts of Ge, Si and Sn peaks consistent with Ge-O, Si-O and Sn-O bond formation. Depth profiling indicates a homogeneous composition throughout the bulk of the sample with surface oxidation confined to the top few nanometers. A highly tin-enriched layer was indicated at the surface of the material, while silicon was observed to be either enriched or depleted at the surface depending on the sample.To study the interaction of the ternary with an ohmic contact commonly used in device fabrication processes today, nickel layers 30 nm thick were evaporated onto the alloys and were annealed in nitrogen up to 400 °C for periods as long as 1 hour. The XRD data show that the Ni2(Ge1-x-ySixSny) phase forms first followed by Ni(Ge1-x-ySixSny).


1988 ◽  
Vol 42 (5) ◽  
pp. 754-760 ◽  
Author(s):  
Brian E. Goodby ◽  
Jeanne E. Pemberton

X-ray photoelectron spectroscopy (XPS) is used to characterize the surface region of a commercial Cu/ZnO/Al2O3 (33/66/1 wt %) catalyst. A systematic study of the effects of oxidation, reduction, and the steam reformation of methanol on the oxidative state of the Cu component is presented. The Zn XPS features show no changes due to the various treatments. Peak fitting procedures were developed to quantitate the Cu oxidation states on the basis of the XPS Cu 2P3/2 main and satellite features. After oxidation in pure O2 at 300°C, all Cu exists as Cu+2. The Cu/Zn ratio changes from 0.28 to 0.37 as a result of this oxidation, in comparison to the ratio in the catalyst as-received. The reduction studies involved different H2/N2 mixtures (15 to 100% H2) and temperatures (250 to 300°C). The catalyst always contains Cu+1 (7.0 ± 5.0%) and Cu° (93.0 ± 5.0%) sifter reduction. The Cu/Zn ratio decreases from approximately 0.37 in the oxidized catalyst to 0.13 after reduction. After methanol-steam reformation with a 50/50 vol % mixture, the Cu 2P3/2 and Auger features are indicative of complete reduction of all Cu in the catalyst to a reduced Cu° state not seen previously. Changes in the Cu/ Zn ratio of the surface are interpreted in terms of changes in surface morphology of the Cu species.


2012 ◽  
Vol 486 ◽  
pp. 368-372
Author(s):  
Hui Zhao ◽  
Yan Wang

In this paper, nanotubular TiO2 obtained by hydrothermal method was selected as precursor to prepare metal ion decorated TiO2-xNxvia a facile and one-pot method. As-synthesized M/TiO2-xNx (M references to Pd, Fe, Ni, Li) photocatalysts were characterized by means of X-ray diffraction, diffuse reflectance spectrometry, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of different metal ion decorated TiO2-xNx samples were compared by monitoring the photocatalytic oxidation of propylene under both ultraviolet light (UV) and visible light (Vis) irradiation. It was found that Pd/TiO2-xNx sample possessed the highest photocatalytic activity under both UV and Vis irradiation. The better crystallinity, better visible light absorption, higher hydroxy concentration were contributed to the best photocatalytic performance of Pd/TiO2-xNx.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1128 ◽  
Author(s):  
Huang ◽  
Luo ◽  
Wang

The development of an efficient solid catalyst for Friedel–Crafts (FC) reactions is of great importance to organic synthetic chemistry. Herein, we reported the hafnium-doped mesoporous silica catalyst Hf/SBA-15 and its first use for Friedel–Crafts alkylation reactions. Catalysts with different Si/Hf ratios were prepared and characterized, among which Hf/SBA-15(20) (Si/Hf = 20:1) was the most active catalyst, offering up to 99.1% benzylated product under mild reaction conditions. The influences of reaction conditions on the product were systematically investigated and compared. Pyridine-IR characterization of the catalyst showed that Lewis acid formed the primary active sites for the Friedel–Crafts alkylation reaction. X-ray photoelectron spectroscopy (XPS) characterization revealed that the electron shift from the Hf center to the silica framework resulted in a more active Lewis metal center for FC reactions. Moreover, the catalyst was successfully applied to the alkylation reaction with different alcohols and aromatic compounds. Finally, the Hf/SBA-15(20) catalyst also showed good recyclability in the recycling runs, demonstrating its high potential of being used for large scale FC reactions in the industry.


2012 ◽  
Vol 548 ◽  
pp. 234-238
Author(s):  
Guang Yan Liu ◽  
Wen Cai Wang

XPS characterization of self-assembled monolayers (SAMs) of tetraphenylporphyrin bearing a rigid tripodal linker by chemisorption of the thiol-derivatized terminal groups on gold substrate is described. The surface structure of the SAMs bearing tripodal linker were analyzed by X-ray photoelectron spectroscopy (XPS), and electrochemical cyclic voltammetry (CV) measurements. XPS confirms the formation of porphyrin SAMs on Au surface and identified bonding configurations of porphyrin molecules in the chemisorption of SAMs. The film thickness values (36 Å) obtained by XPS agree well with the estimated value by assuming the vertical orientation of the molecules on the gold surface. Using the Au4f7/2 as an internal standard, a lower binding energies shift (1.8 eV) of S2p in the SAMs reveals that the porphyrins were chemisorbed onto the surface via sulfurgold bonds. Electrochemical CV measurements suggest near monolayer coverage of the tripodal porphyrins with good stability of the redox SAMs, which have promising application in the development of molecular based electronic device and memory architectures.


2020 ◽  
Vol 1001 ◽  
pp. 229-234
Author(s):  
Qin Sheng Wang ◽  
Zheng Liu ◽  
Wen Juan Su ◽  
Yong Qiang Yang ◽  
Wei Fang Zhao ◽  
...  

Graphene was attended widely in recent years because of its excellent performance in electrical, mechanical, optical and magnetic applications. X-ray photoelectron spectroscopy (XPS) is commonly used tools for studying the chemical binding state, chemical modification, heteroatom dopants and quantitative chemical composition of graphene. In this work, XPS characterization of graphene films, obtained through reduction and then thermal treatment of graphene oxide films, was studied. The XPS of the graphene films are performed by direct testing, Ar+ etching, and direct peeling of the surface layer. The result shows that for graphene film, direct peeling is a simple and easy to use low-cost treatment, which can also be extended to XPS testing of other two-dimensional (2D) materials.


Sign in / Sign up

Export Citation Format

Share Document