scholarly journals Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Guo Liu ◽  
Liang Xu ◽  
Yi Wang

A novel high-performance circularly polarized (CP) antenna is proposed in this paper. Two separate antennas featuring the global positioning system (GPS) dual-band operation (1.575 GHz and 1.227 GHz for L1 band and L2 band, resp.) are integrated with good isolation. To enhance the gain at low angle, a new structure of patch and two parasitic metal elements are introduced. With the optimized design, good axial ratio and near-hemispherical radiation pattern are obtained.

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Minkil Park ◽  
Wonhee Lee ◽  
Taeho Son

A composite Global Positioning System (GPS) patch antenna with a quadrature 3 dB hybrid coupler was designed and implemented for working RHCP and had a broadband axial ratio (AR) bandwidth. We designed two patches as a FR-4 patch and 1.5 mm thickness thin ceramic patch with a quadrature 3 dB hybrid coupler. A CP radiation pattern was achieved, and the AR bandwidth improved by incorporating a quadrature 3 dB hybrid coupler feed structure in a micro-strip patch antenna. SMD by chip elements was applied to the quadrature 3 dB hybrid coupler. For the composite FR-4 and ceramic patch antennas, the VSWR measurement showed a 2 : 1 ratio over the entire design band, and the 3 dB AR bandwidth was 295 and 580 MHz for the FR-4 patch and ceramic patch antennas, respectively. The antenna gains for the composite FR-4 and ceramic patch antennas were measured as 1.36–2.75 and 1.47–2.71 dBi with 15.11–25.3% and 19.25–28.45% efficiency, respectively.


Author(s):  
Murari Shaw ◽  
Niranjan Mandal ◽  
Malay Gangopadhyay

Abstract In this paper, a stacked microstrip patch antenna with polarization reconfigurable property has been proposed for worldwide interoperability for microwave access (WiMAX) application. The proposed antenna has two substrate layers: upper and lower layers with two radiating patches connected with the coaxial probe. Without the upper layer the lower square-shaped substrate layer having regular hexagonal radiating patch with probe fed acts as a linear polarized antenna with impedance bandwidth for (S11 ≤ −10 dB) is 370 MHz 10.56% (3.32–3.69 GHz) cover WiMAX (3.4–3.69 GHz) application band. The hexagonal radiating patch is perturbed with an optimum rectangular slot to enhance the impedance bandwidth of the antenna. The lower substrate layer having hexagonal patch with the same probe position is stacked with the upper square-shaped substrate layer with same sized square patch and the upper patch soldered with the coaxial probe. The overall stacked antenna generates a circularly polarized band when the opposite corner of the top square radiating patch of the upper layer is truncated with optimum size. In order to generate another circularly polarized band and to improve the input impedance matching of the stacked antenna, the top radiating patch is perturbed with two slots and a slit. The stacked circularly polarized antenna generates impedance bandwidth of 12.75% (3.23–3.67 GHz) for (S11 ≤ −10 dB) with two circularly polarized bands (3.34–3.37 GHz) and (3.66–3.70 GHz) as per (axial ratio ≤ 3 dB) for WiMAX application. Therefore, the proposed antenna can be used as linearly polarized or dual band circularly polarized according to requirement.


2010 ◽  
Vol 53 (1) ◽  
pp. 14-17 ◽  
Author(s):  
Seok Bae ◽  
Yang Ki Hong ◽  
Jae Jin Lee ◽  
Ji Hoodn Park ◽  
Jeevan Jalli ◽  
...  

2016 ◽  
Vol 9 (4) ◽  
pp. 843-850 ◽  
Author(s):  
Dinesh Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
Santanu Dwari ◽  
Ganga Prasad Pandey ◽  
Sandeep Kumar

The design and measurement of reconfigurable circularly polarized capacitive fed microstrip antenna are presented. Small isosceles right angle triangular sections are removed from diagonally opposite corners for the generation of circular polarization (CP) of axial ratio bandwidth of 11.1%. Horizontal slits of different lengths are inserted at the edges of the truncated patch to provide the dual-band CP and by switching PIN diodes across the slits ON and OFF, reconfigurable circularly polarized antenna is realized. The antenna shows dual-band behavior with reconfigurable CP. In order to enhance the operation bandwidth of the antenna, an inclined slot was embedded on the patch along with PIN diodes across the horizontal slits. This proposed antenna gave an impedance bandwidth of 66.61% (ON state) ranging from 4.42 to 8.80 GHz and 68.42% (OFF state) ranging from 4.12 to 8.91 GHz and exhibits dual-frequency CP with PIN diode in OFF state and single-frequency CP with PIN diode in ON state with good axial ratio bandwidth. The axial ratio bandwidth of 4.42, 2.35, and 2.72% is obtained from the antenna. The antenna has a similar radiation pattern in all the three different CP bands and almost constant gain within the bands of CP operation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xihong Ye ◽  
Mang He ◽  
Pingyuan Zhou ◽  
Houjun Sun

A compact single-feed circularly polarized microstrip antenna is proposed to achieve symmetric radiation pattern over a wide range of observation angles. In order to reduce the radiation aperture and consequently broaden the circular polarization (CP) and the half power beamwidth (HPBW) of the antenna, a partially etched superstrate and a conducting cavity are employed in the design. Further, reasonable axial ratio (AR) and impedance bandwidths are realized within the compact structure by using a simple series crossed-slot aperture coupled feeding. As a consequence, the overall dimension of the fabricated prototype is 0.32λ0× 0.32λ0× 0.12λ0at the center operating frequency of 1.56 GHz, and a 3.0% overlapped bandwidth of 10 dB return loss (RL) and 3 dB AR is obtained. Within the bandwidth, symmetric CP radiation pattern over almost the entire upper hemisphere is observed and the HPBW is also increased from 60° to 106°.


Sign in / Sign up

Export Citation Format

Share Document