In vitro synergy of ceftolozane/tazobactam in combination with fosfomycin or aztreonam against MDR Pseudomonas aeruginosa

2020 ◽  
Vol 75 (7) ◽  
pp. 1874-1878 ◽  
Author(s):  
Gabriel T Cuba ◽  
Gerlan Rocha-Santos ◽  
Rodrigo Cayô ◽  
Ana Paula Streling ◽  
Carolina S Nodari ◽  
...  

Abstract Objectives Carbapenem-resistant Pseudomonas aeruginosa (CR-PSA) imposes great limitations on empirical therapeutic choices, which are further complicated by metallo-β-lactamase production. This study evaluated in vitro antimicrobial synergy of ceftolozane/tazobactam in combination with aztreonam and fosfomycin against MDR PSA. Methods MICs were determined by broth microdilution and gradient strips. The effect of ceftolozane/tazobactam+aztreonam and ceftolozane/tazobactam+fosfomycin combinations were tested against 27 MDR PSA isolates carrying blaSPM-1 (n = 13), blaIMP (n = 4), blaVIM (n = 3), blaGES-1 (n = 2) and blaCTX-M-like (n = 2), and 3 isolates with no acquired β-lactamase production detected by gradient diffusion strip crossing (GDSC). Six genetically unrelated SPM-1-producing isolates were also evaluated by time–kill analysis (TKA). Results All CR-PSA isolates harbouring blaSPM-1, blaGES-1 and blaIMP-1 were categorized as resistant to ceftolozane/tazobactam, meropenem and fosfomycin, with 70% being susceptible to aztreonam. Synergism for ceftolozane/tazobactam+fosfomycin and ceftolozane/tazobactam+aztreonam combinations was observed for 88.9% (24/27) and 18.5% (5/27) of the isolates by GDSC, respectively. A 3- to 9-fold reduction in ceftolozane/tazobactam MICs was observed, depending on the combination. Ceftolozane/tazobactam+fosfomycin was synergistic by TKA against one of six SPM-1-producing isolates, with additional non-synergistic bacterial density reduction for another isolate. Aztreonam peak concentrations alone demonstrated a ≥3 log10 cfu/mL reduction against all six isolates, but all strains were within the susceptible range for the drug. No antagonism was observed. Conclusions In the context of increasing CR-PSA and the genetic diversity of resistance mechanisms, new combinations and stewardship strategies may need to be explored in the face of increasingly difficult to treat pathogens.

2020 ◽  
pp. jim-2020-001573
Author(s):  
Sanjida Jahan ◽  
Heather Davis ◽  
Deborah S Ashcraft ◽  
George A Pankey

Pseudomonas aeruginosa is a nosocomial pathogen containing various resistance mechanisms. Among them, metallo-β-lactamase (MBL)–producing Pseudomonas are difficult to treat. Fosfomycin is an older antibiotic that has recently seen increased usage due to its activity against a broad spectrum of multidrug-resistant organisms. Our aim was to evaluate the combination of fosfomycin and meropenem against 20 MBL-producing P. aeruginosa (100% meropenem-resistant and 20% fosfomycin-resistant) using both an Etest minimal inhibitory concentration (MIC): MIC method and time-kill assay. MICs for fosfomycin and meropenem were determined by Etest and by broth microdilution method for the latter. The combination demonstrated synergy by Etest in 3/20 (15%) isolates and 5/20 (25%) isolates by time-kill assay. Results from the Etest method and time-kill assay were in agreement for 14/20 (70%) of isolates. No antagonism was found. Comparing both methods, Etest MIC: MIC method may be useful to rapidly evaluate other antimicrobial combinations.


2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Mordechai Grupper ◽  
Christina Sutherland ◽  
David P. Nicolau

ABSTRACT The recent escalation of occurrences of carbapenem-resistant Pseudomonas aeruginosa has been recognized globally and threatens to erode the widespread clinical utility of the carbapenem class of compounds for this prevalent health care-associated pathogen. Here, we compared the in vitro inhibitory activity of ceftazidime-avibactam and ceftolozane-tazobactam against 290 meropenem-nonsusceptible Pseudomonas aeruginosa nonduplicate clinical isolates from 34 U.S. hospitals using reference broth microdilution methods. Ceftazidime-avibactam and ceftolozane-tazobactam were active, with ceftolozane-tazobactam having significantly higher inhibitory activity than ceftazidime-avibactam. The heightened inhibitory activity of ceftolozane-tazobactam was sustained when the site of origin (respiratory, blood, or wound) and nonsusceptibility to other β-lactam antimicrobials was considered. An extensive genotypic search for enzymatically driven β-lactam resistance mechanisms revealed the exclusive presence of the VIM metallo-β-lactamase among only 4% of the subset of isolates nonsusceptible to ceftazidime-avibactam, ceftolozane-tazobactam, or both. These findings suggest an important role for both ceftazidime-avibactam and ceftolozane-tazobactam against carbapenem-nonsusceptible Pseudomonas aeruginosa. Further in vitro and in vivo studies are needed to better define the clinical utility of these novel therapies against the increasingly prevalent threat of multidrug-resistant Pseudomonas aeruginosa.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S562-S563
Author(s):  
Jacinda Abdul-Mutakabbir ◽  
Juwom Yim ◽  
Logan Nguyen ◽  
Razieh Kebriaei ◽  
Kyle Stamper ◽  
...  

Abstract Background Acinetobacter baumannii possess inherent and acquired antibiotic resistance mechanisms that have rendered most antibiotics, including carbapenems, inactive. Colistin (COL) has risen as salvage therapy against these organisms due to its retained activity against A. baumannii. However, COL monotherapy is often met with suboptimal outcomes. Recently, combination therapy with COL and meropenem (MEM) or tigecycline (TGC) has been shown to be effective in eradicating multi-drug-resistant A. baumannii infections. The objective of this study was to further evaluate the efficacy of COL in combination with MEM or TGC against 50 multi-drug-resistant A. baumannii strains. Methods Fifty carbapenem-resistant A. baumannii strains were evaluated using combination minimum inhibitory concentration (MIC) testing and time-kill analysis (TKA). Single-drug MIC testing was performed for each strain by broth microdilution. Combination MIC testing was performed for COL+MEM and COL+TGC. Each strain was evaluated via 24-hour TKA to assess the synergistic capabilities of COL+MEM, and COL+TGC. Synergy was defined as a ≥ 2-log reduction CFU/mL in either combination from the most active single agent, while bactericidal activity was defined as a ≥ 3-log reduction CFU/mL of either combination from the initial inoculum. Results All 50 strains were resistant to MEM and TGC with MICs ≥ 64 µg/mL and ≥ 4 µg/mL respectively; while 3 strains were resistant to COL, MICs ≥ 2 µg/mL. MEM and TGC MIC values were reduced as much as 128-fold (median 2-fold) and 32-fold (median 2-fold),, respectively, in the presence of subinhibitory COL. COL MIC values were reduced as much as 512-fold (median 4-fold) from baseline in the presence of subinhibitory MEM, and as high as 16-fold (median 2-fold) in the presence of TGC. In TKAs, COL+MEM was synergistic in 45/50 (90%) strains and bactericidal against 43/50 (86%) strains. COL+TGC TKAs revealed synergy in 32/50 (64%) strains, and bactericidal activity against 28/50 (56%) strains. Conclusion The combinations of COL+MEM and COL+TGC demonstrate promise in combating highly resistant A. baumannii. Further research is mandated to explore other combinations that are capable of eradicating multi-drug-resistant A. baumannii. Disclosures All authors: No reported disclosures.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Yu Mi Wi ◽  
Kerryl E. Greenwood-Quaintance ◽  
Audrey N. Schuetz ◽  
Kwan Soo Ko ◽  
Kyong Ran Peck ◽  
...  

ABSTRACT Although carbapenems are effective for treating serious multidrug-resistant Pseudomonas aeruginosa infections, carbapenem-resistant P. aeruginosa (CRPA) is now being reported worldwide. Ceftolozane-tazobactam (C/T) demonstrates activity against many multidrug-resistant isolates. We evaluated the activity of C/T and compared its activity to that of ceftazidime-avibactam (C/A) using a well-characterized collection of non-carbapenemase-producing CRPA isolates. Forty-two non-carbapenemase-producing CRPA isolates from a previous study (J. Y. Lee and K. S. Ko, Int J Antimicrob Agents 40:168–172, 2012, https://doi.org/10.1016/j.ijantimicag.2012.04.004) were included. All had been previously shown to be negative for bla IMP, bla VIM, bla SPM, bla GIM, bla SIM, and bla KPC by PCR. In the prior study, expression of oprD, ampC, and several efflux pump genes had been defined by quantitative reverse transcription-PCR. Here, antimicrobial susceptibility was determined by broth microdilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Time-kill curve assays were performed using three C/T- and C/A-susceptible CRPA isolates. Among 42 non-carbapenemase-producing CRPA isolates, overall susceptibility to C/T was 95.2%, compared to 71.4%, 42.9%, 23.8%, 21.4%, and 2.4% for C/A, ceftazidime, piperacillin-tazobactam, cefepime, and meropenem, respectively. The C/T resistance rate was significantly lower than that of C/A among isolates showing decreased oprD and increased mexB expression (5.1% versus 25.6%, P = 0.025, and 4.3% versus 34.8%, P = 0.022, respectively). In time-kill curve studies, C/T was less bactericidal than C/A against an isolate with decreased oprD and increased ampC expression. C/T was active against 95.2% of non-carbapenemase-producing CRPA clinical isolates. No apparent correlation of C/T MIC values with specific mutation-driven resistance mechanisms was noted.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 880
Author(s):  
Jacinda C. Abdul-Mutakabbir ◽  
Juwon Yim ◽  
Logan Nguyen ◽  
Philip T. Maassen ◽  
Kyle Stamper ◽  
...  

Acinetobacter baumannii is currently classified as one of six pathogens that contribute to increased patient mortality. Thus, exploratory studies navigating alternative treatment strategies are of supreme interest. Herein, we completed minimum inhibitory concentration (MIC) testing, and time-kill analyses (TKA) on 50 carbapenem-resistant Acinetobacterbaumannii isolates including 28 colistin-resistant isolates. Upon testing of MEM or TGC in the presence of sub-inhibitory COL against the 50 isolates, there was a median 2-fold reduction in MEM and TGC MICs. In the TKAs, the COL+MEM combination was synergistic in 45 (90%) isolates and bactericidal in 43 (86%) isolates at 24 hours, whereas the COL+TGC combination TKAs demonstrated synergy in 32 (64%) isolates and bactericidal activity was shown in 28 (56%) isolates. Additionally, sulbactam (SUL) and TGC were added to the COL+MEM dual therapy regimen to assess the possible utility of a triple therapy regimen against five non-responsive isolates. The COL+MEM+SUL and COL+MEM+TGC regimens effectively restored synergy in (5/5) 100% of the isolates. The results of this study demonstrate the potential utility of COL combinations in the treatment of carbapenem-resistant isolates.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Elias M. Mullane ◽  
Lindsay M. Avery ◽  
David P. Nicolau

ABSTRACT The in vitro activity of WCK 5222 (cefepime-zidebactam) was compared to that of several available combination therapies among 30 clinical carbapenem-resistant Pseudomonas aeruginosa (CRP) strains using gradient diffusion strips. The combinations included nonsusceptible β-lactams (cefepime, ceftolozane-tazobactam, and meropenem) with amikacin and fosfomycin. WCK 5222 MICs ranged from 2 to 32 mg/liter, and 97% were ≤16 mg/liter, while 105/146 (72%) combinations demonstrated inhibition below established susceptibility breakpoints. WCK 5222 monotherapy may be preferred over the combinations assessed for CRP infections.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S662-S663
Author(s):  
Jacinda C Abdul-Mutakabbir ◽  
Logan Nguyen ◽  
Kyle Stamper ◽  
Philip Maassen ◽  
Katherine Lev ◽  
...  

Abstract Background The emergence of multidrug-resistant (MDR) Pseudomonas aeruginosa strains, has resulted in the use of previously discarded antibiotics, such as the polymyxins (polymyxin B and colistin (COL)). Consequently, the polymyxins are continually characterized by the cytotoxicity associated with their use. SPR206 is a polymyxin analogue, however the N-terminal lipophilic side chain has been extensively modified, decreasing the potential for adverse events. SPR206 has reduced minimum inhibitory concentrations (MIC) MIC50 and MIC90 in P. aeruginosa strains when compared to COL. The objective of this study was to compare the in-vitro activity of SPR206 to COL both alone and in combination with other antimicrobials against MDR P. aeruginosa. Methods MIC susceptibility testing was performed against 15 carbapenem-resistant P. aeruginosa strains via broth microdilution. SPR206, COL, aztreonam (AZT) and ceftazidime/ avibactam (CAZ/AVI) were evaluated against the P. aeruginosa strains. Dual therapy and triple therapy combinations, either COL or SPR206-based, were tested against four representative strains in 24h time-kill experiments (TKE). Each antibiotic was tested at both 0.5 and 1x the MIC. A >2 log10 and a >3log10 reduction in CFU/ml were defined as synergistic and bactericidal activity, respectively. Results The MIC testing revealed a lower range of MIC values for SPR206 compared to all agents tested, including COL, for the 15 MDR P. aeruginosa strains. A mean 2-fold reduction in MIC values was observed when comparing the activity of SPR206 to COL. Neither the SPR206 nor COL+CAZ/AVI combinations presented with synergistic activity in the TKEs. SPR206 or COL + CAZ/AVI +AZT, showed synergistic activity against each strain, irrespective of COL or SPR206 base and the tested concentration. At 0.5x MIC bactericidal activity was observed in two of the strains with either COL or SPR206 + AZT. However, at 1xMIC the SPR206+AZT combination exhibited bactericidal activity, equal to that of the triple therapy regimens, against each strain. Conclusion The combination of SPR206 with other antibiotic agents showed promise in eradicating MDR P. aeruginosa. Further research is warranted to solidify the role of SPR206 in the current antibiotic armamentarium. Disclosures Michael J. Rybak, PharmD, MPH, PhD, Paratek (Grant/Research Support)


2019 ◽  
Vol 18 (24) ◽  
pp. 2127-2132 ◽  
Author(s):  
Oscar Cirioni ◽  
Oriana Simonetti ◽  
Gianluca Morroni ◽  
Lucia Brescini ◽  
Wojciech Kamysz ◽  
...  

Background: Pseudomonas aeruginosa is a gram-negative pathogen, associated with a severe mortality rate. It is also difficult to treat due to numerous resistance mechanisms to a wide range of antibiotics. Objective: Evaluate the activity of pexiganan, an antimicrobial peptide, in combination with two clinical antibiotics (azithromycin and tigecycline) that are not active against P. aeruginosa. Methods: Ten clinical P. aeruginosa were isolated from urinary tract infections, blood culture, skin infections and respiratory tract infections. Minimum inhibitory concentrations (MICs) and synergies were evaluated by broth microdilution, checkerboard assays and time-kill studies. In vitro synergy was confirmed with an in vivo experiment using a murine model of sepsis. Results: Pexiganan MICs were included between 2 and 16 mg/L. Tigecycline and azithromycin MICs were high as expected (4-64 mg/L and 32-256 mg/L, respectively). Pexiganan and azithromycin combination resulted to be additive or indifferent while tigecycline and pexiganan combination was synergic against seven out of ten P. aeruginosa and additive against the other strains. In vivo experiment confirmed the in vitro synergy, denoting a significative reduction of bacteria in mice treated with pexiganan and tigecycline combination. Conclusion: Antimicrobial peptides are molecules that could be useful in the fight against infections and pexiganan seems to be one of the most promising. Our results demonstrated that, in association with tigecycline, pexiganan administration could overcome antibiotic resistance and increase the effectiveness of treatment against P. aeruginosa sepsis.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S725-S725
Author(s):  
Mariana Castanheira ◽  
Timothy B Doyle ◽  
Cory Hubler ◽  
Rodrigo E Mendes ◽  
Helio S Sader

Abstract Background Most CRE isolates in US hospitals produce KPC enzymes, but some do not carry carbapenemases. We investigated the prevalence, resistance mechanisms and activity of ceftazidime-avibactam and comparator agents against CRE that did not carry carbapenemase genes from US hospitals. Additionally, meropenem-resistant isolates were tested for meropenem-vaborbactam. Methods A total of 28,904 Enterobacterales isolates were collected in 70 US hospitals during 2016-2018, and susceptibility tested by reference broth microdilution. Meropenem-vaborbactam was tested using lyophilized panels following the manufacturer’s instructions. CRE isolates were submitted to whole genome sequencing for the screening of b-lactamase genes, multilocus sequence typing, changes in outer membrane protein (OMP) genes and AmpC expression levels. Results A total of 304 (1.1%) CREs were observed in the study period and 45 (14.8%) isolates did not carry carbapenemases. These isolates were mainly Klebsiella aerogenes, Enterobacter cloacae and Klebsiella pneumoniae (11, 11 and 10 isolates, respectively), but also included 5 other species. Acquired b-lactamase genes were detected among 17 isolates and blaCTX-M-15 was the most common (13 isolates). All K. aerogenes and 10 E. cloacae did not carry acquired b-lactamase genes. Ceftazidime-avibactam (100% susceptible) inhibited all isolates at the current breakpoint, followed by tigecycline and amikacin (> 80% susceptible). Other comparators were not active against non-carbapenemase-producing CRE. Nine of 35 meropenem-resistant isolates displayed meropenem-vaborbactam MIC values of ≥ 8 mg/L (nonsusceptible). Further analysis showed that 23 isolates had disruption of OmpC/OmpK36, 4 had disrupted OmpF/OmpK35 and 13 had both OMP genes disrupted. Additionally, 7 isolates had elevated AmpC expression among 17 isolates tested. Among 7 E. coli, 4 were ST131 and only 2 of 10 K. pneumoniae were clonal complex 11. Conclusion Therapy options for treatment of infections caused by CRE were very limited until recent approval of new agents with activity against these isolates. Ceftazidime-avibactam demonstrated full in vitro activity against all carbapenemase-negative CRE carrying multiple resistance mechanisms. Disclosures Mariana Castanheira, PhD, 1928 Diagnostics (Research Grant or Support)A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Amplyx Pharmaceuticals (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Fox Chase Chemical Diversity Center (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Merck & Co, Inc. (Research Grant or Support)Merck & Co, Inc. (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support)Pfizer (Research Grant or Support)Qpex Biopharma (Research Grant or Support) Timothy B. Doyle, Allergan (Research Grant or Support)Allergan (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Pfizer (Research Grant or Support)Qpex Biopharma (Research Grant or Support) Cory Hubler, Allergan (Research Grant or Support) Rodrigo E. Mendes, PhD, A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Basilea Pharmaceutica International, Ltd (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Department of Health and Human Services (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Pfizer (Research Grant or Support) Helio S. Sader, MD, PhD, A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Melinta (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support)Pfizer (Research Grant or Support)


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 877
Author(s):  
Ana Mafalda Pinto ◽  
Alberta Faustino ◽  
Lorenzo M. Pastrana ◽  
Manuel Bañobre-López ◽  
Sanna Sillankorva

Pseudomonas aeruginosa is responsible for nosocomial and chronic infections in healthcare settings. The major challenge in treating P. aeruginosa-related diseases is its remarkable capacity for antibiotic resistance development. Bacteriophage (phage) therapy is regarded as a possible alternative that has, for years, attracted attention for fighting multidrug-resistant infections. In this work, we characterized five phages showing different lytic spectrums towards clinical isolates. Two of these phages were isolated from the Russian Microgen Sextaphage formulation and belong to the Phikmvviruses, while three Pbunaviruses were isolated from sewage. Different phage formulations for the treatment of P. aeruginosa PAO1 resulted in diversified time–kill outcomes. The best result was obtained with a formulation with all phages, prompting a lower frequency of resistant variants and considerable alterations in cell motility, resulting in a loss of 73.7% in swimming motility and a 79% change in swarming motility. These alterations diminished the virulence of the phage-resisting phenotypes but promoted their growth since most became insensitive to a single or even all phages. However, not all combinations drove to enhanced cell killings due to the competition and loss of receptors. This study highlights that more caution is needed when developing cocktail formulations to maximize phage therapy efficacy. Selecting phages for formulations should consider the emergence of phage-resistant bacteria and whether the formulations are intended for short-term or extended antibacterial application.


Sign in / Sign up

Export Citation Format

Share Document