scholarly journals Simulation of Multiphase Flow of the Oil-Water Separation in a Rotating Packed Bed for Oil Purification

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaojun Zhang ◽  
Yun Cheng ◽  
Songlin Nie ◽  
Hui Ji ◽  
Laiguo Liu

HIGEE (High Gravity Rotary Device) rotating oil purifier which consists of two parts: hydrocyclone separator and rotating packed bed (abbr. RPB) is considered to be capable of removing the solid particle contaminant, moisture and gas simultaneously. As the major unit of HIGEE, the RPB uses centrifugal force to intensify mass transfer. Because of the special structure of RPB, the hydraulic characteristics of the RPB are very important. In this study, the multiphase flow model in porous media of the RPB is presented, and the dynamical oil-water separation in the RPB is simulated using a commercial computational fluid dynamics code. The operating conditions and configuration on the hydraulic performance of the RPB are investigated. The results have indicated that the separation efficiency of HIGEE rotating oil purifier is predominantly affected by operating conditions and the configurations. The best inlet pressure is 0.002 MPa. When the liquid inlet is placed in the outside of the lower surface of RPB; oil outlet is placed in the upper surface, where it is near the rotation axis; and water outlet is placed in the middle of the RPB, where it is far away from the oil outlet, the separating efficiency is the best.

2021 ◽  
Author(s):  
Baiyi Chen ◽  
Rongrong Zhang ◽  
Hexuan Fu ◽  
Jiadai Xu ◽  
Yuan Jing ◽  
...  

Abstract There has been a growing interest in oil-water separation due to the massive economic and energy loss caused by world-wide oil spill. In the past decades, a new type of superhydrophobic surface has been developed for the efficient oil-water separation, but its large-scale use is significantly limited by its expensive, sophisticated, and fragile roughness structure. Meanwhile, to handle complex operating conditions, the transparency of the superhydrophobic surface has been more attractive due to its potential visual oil-water separation and optical applications. Herein, we showed a simple and versatile strategy to fabricate superhydrophobic coating with robustness and high transparency. Subsequently, this multifunctional superhydrophobic coating was utilized for oil-water separation and indicated excellent separation efficiency. In this strategy, candle soot composed of carbon nanoparticles was deposited onto the substrate and used as a rough surface template. Then, a filmy and hard silica shell was modified onto this template via chemical vapor deposition to reinforce the roughness structure. Following, this soot-silica coated substrate was calcined in air to remove the candle soot template. Finally, based on a rational surface design, this robust silica coating achieved excellent superhydrophobicity thereby showing inherently oil-water separation benefits. This reinforced superhydrophobic coating presented robust superhydrophobicity even after 410 s sand impacting with the height of 40 cm. Also, it retained excellent oil-water separation efficiency even after reuses.


2021 ◽  
Vol 18 (4) ◽  
pp. 887-899
Author(s):  
Yanling Tian ◽  
Jiekai Feng ◽  
Zexin Cai ◽  
Jiaqi Chao ◽  
Dawei Zhang ◽  
...  

AbstractReckless discharge of industrial wastewater and domestic sewage as well as frequent leakage of crude oil have caused serious environmental problems and posed severe threat to human survival. Various nature inspired superhy-drophobic surfaces have been successfully applied in oily water remediation. However, further improvements are still urgently needed for practical application in terms of facile synthesis process and long-term durability towards harsh environment. Herein, we propose a simple one-step dodecyl mercaptan functionalization method to fabricate Super-hydrophobic-Superoleophilic Copper Mesh (SSCM). The prepared SSCM possesses excellent water repellence and oil affinity, enabling it to successfully separate various oil-water mixtures with high separation efficiency (e.g., > 99% for hexadecane-water mixture). The SSCM retains high separating ability when hot water and strong corrosive aqueous solutions are used to simulate oil-water mixtures, indicating remarkable chemical durability of the dodecyl mercaptan functionalized copper mesh. Additionally, the efficiency can be well maintained during 50 cycles of separation, and the water repellence is even stable after storage in air for 120 days, demonstrating the reusability and long-term stability of the SSCM. Furthermore, the functionalized mesh also shows good mechanical robustness towards abrasion by sandpaper, and oil-water separation efficiency of > 96% can be obtained after 10 cycles of abrasion. The reported one-step dodecyl mercaptan functionalization could be a simple method for increasing the water repellence of copper mesh, and thereby be a great candidate for treating large-scale oily wastewater in harsh environments.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Hong ◽  
Zhu Liu ◽  
Yang Gao ◽  
Yubin Chen ◽  
Mingxun Zhuang ◽  
...  

Superhydrophobic sponge as potential absorbing material for oil/water separation is attracting great attention recently. However, there are still some challenges to feasibly fabricate superhydrophobic sponge with large scale and low cost. Herein, a novel photochromic superhydrophobic melamine sponge (PDMS-SP sponge) is fabricated by facilely dip-coating and thermocuring of hydroxyl-terminated polydimethylsiloxanes mixed with photochromic spiropyran. FT-IR, EDS, and XPS results confirm the successful coating of PDMS-SP upon melamine sponge. The resultant sponge not only possesses excellent water repellency with a contact angle of 154.5° and oil-water separation efficiency with an oil absorption capacity of 48–116 folds of itself weight, but also shows photochromic phenomenon between colorless and purple when it is successively exposed to UV irradiation and visible light.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 775 ◽  
Author(s):  
Fei Sun ◽  
Ting-Ting Li ◽  
Haitao Ren ◽  
Qian Jiang ◽  
Hao-Kai Peng ◽  
...  

This study aims to produce polypropylene (PP)/titanium dioxide (TiO2) melt-blown membranes for oil/water separation and photocatalysis. PP and different contents of TiO2 are melt-blended to prepare master batches using a single screw extruder. The master batches are then fabricated into PP/TiO2 melt-blown membranes. The thermal properties of the master batches are analyzed using differential scanning calorimetry and thermogravimetric analysis, and their particle dispersion and melt-blown membrane morphology are evaluated by scanning electron microscopy. TiO2 loaded on melt-blown membranes is confirmed by X-ray diffraction (XRD). The oil/water separation ability of the melt-blown membranes is evaluated to examine the influence of TiO2 content. Results show that the thermal stability and photocatalytic effect of the membranes increase with TiO2 content. TiO2 shows a good dispersion in the PP membranes. After 3 wt.% TiO2 addition, crystallinity increases by 6.4%, thermal decomposition temperature increases by 25 °C compared with pure PP membranes. The resultant PP/TiO2 melt-blown membrane has a good morphology, and better hydrophobicity even in acetone solution or 6 h ultraviolet irradiation, and a high oil flux of about 15,000 L·m−2·h−1. Moreover, the membranes have stabilized oil/water separation efficiency after being repeatedly used. The proposed melt-blown membranes are suitable for mass production for separating oil from water in massively industrial dyeing wastewater.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 442 ◽  
Author(s):  
Mingguang Yu ◽  
Qing Wang ◽  
Wenxin Yang ◽  
Yonghang Xu ◽  
Min Zhang ◽  
...  

In this paper, we present a facile and efficient strategy for the fabrication of magnetic, durable, and superhydrophobic cotton for oil/water separation. The superhydrophobic cotton functionalized with Fe3O4 magnetic nanoparticles was prepared via the in situ coprecipitation of Fe2+/Fe3+ ions under ammonia solution on cotton fabrics using polyvinylpyrrolidone (PVP) as a coupling agent and hydrophobic treatment with tridecafluorooctyl triethoxysilane (FAS) in sequence. The as-prepared cotton demonstrated excellent superhydrophobicity with a water contact angle of 155.6° ± 1.2° and good magnetic responsiveness. Under the control of the external magnetic field, the cotton fabrics could be easily controlled to absorb the oil from water as oil absorbents, showing high oil/water separation efficiency, even in hot water. Moreover, the cotton demonstrated remarkable mechanical durable properties, being strongly friction-resistant against sandpaper and finger wipe, while maintaining its water repellency. This study developed a novel and efficient strategy for the construction of magnetic, durable, and superhydrophobic biomass-based adsorbent for oil/water separation, which can be easily scaled up for practical oil absorption.


2012 ◽  
Vol 557-559 ◽  
pp. 2294-2298
Author(s):  
Yi Xin Pan ◽  
Hong Bing Zhang ◽  
Rong Hua Xie ◽  
Xing Bin Liu

In the oil mining process, we need to hold flow characteristic for oil- and water-sands, with low-middle volume fraction of the particles in gathered pipes, in order to design logging tool and build interpretation methods for the producing profile. We built governing equations and boundary conditions for the oil- and water-sands based on the three-D k-ε-kp model. The simulation results indicate the sand volume fraction affects the sedimentation quantity and rate obviously. Multiphase flow in the gathered pipe is compartmentalized three sections: oil-water separation section, transition section and full mixing section from entrance to exit and multiphase flow meter need to place in the full mixing section. Sediment mainly settles to the bottom of gathered pipes umbrella in the condition of low flow rate and content of sediment, which has little impact on the internal instrument, but need to clear timely. With the increase of sediment volume and reduce of flow race, the time which multiphase flow in the gathered pipe reached a steady state was nonlinear growth.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87332-87340 ◽  
Author(s):  
Y. W. Liu ◽  
C. H. Zhang ◽  
Z. Q. Wang ◽  
X. Fu ◽  
R. Wei

Scaly structure bionic structured on the fabric with superhydrophilicity and underwater superoleophobicity. The modified fabric showed excellent separation efficiency for various oil–water mixtures which could solve oil–water separation issue.


2018 ◽  
Vol 40 (S1) ◽  
pp. E431-E439 ◽  
Author(s):  
Mahdi Akhavan ◽  
Iman Hejazi ◽  
Javad Seyfi ◽  
Samira Ghiyasi ◽  
Seyyed Saeed Ghorashi ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 974 ◽  
Author(s):  
Zhi Liu ◽  
Detao Qin ◽  
Jianghui Zhao ◽  
Quan Feng ◽  
Zhengtao Li ◽  
...  

To address the worldwide oil and water separation issue, a novel approach was inspired by natural phenomena to synthesize superhydrophilic and underwater superoleophobic organic/inorganic nanofibrous membranes via a scale up fabrication approach. The synthesized membranes possess a delicate organic core of PVDF-HFP and an inorganic shell of a CuO nanosheet structure, which endows super-flexible properties owing to the merits of PVDF-HFP backbones, and superhydrophilic functions contributed by the extremely rough surface of a CuO nanosheet anchored on flexible PVDF-HFP. Such an organic core and inorganic shell architecture not only functionalizes membrane performance in terms of antifouling, high flux, and low energy consumption, but also extends the lifespan by enhancing its mechanical strength and alkaline resistance to broaden its applicability. The resultant membrane exhibits good oil/water separation efficiency higher than 99.7%, as well as excellent anti-fouling properties for various oil/water mixtures. Considering the intrinsic structural innovation and its integrated advantages, this core–shell nanofibrous membrane is believed to be promising for oil/water separation, and this facile approach is also easy for scaled up manufacturing of functional organic/inorganic nanofibrous membranes with insightful benefits for industrial wastewater treatment, sensors, energy production, and many other related areas.


Sign in / Sign up

Export Citation Format

Share Document