scholarly journals Improved Inequalities for the Poisson and Binomial Distribution and Upper Tail Quantile Functions

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Michael Short

The exact evaluation of the Poisson and Binomial cumulative distribution and inverse (quantile) functions may be too challenging or unnecessary for some applications, and simpler solutions (typically obtained by applying Normal approximations or exponential inequalities) may be desired in some situations. Although Normal distribution approximations are easy to apply and potentially very accurate, error signs are typically unknown; error signs are typically known for exponential inequalities at the expense of some pessimism. In this paper, recent work describing universal inequalities relating the Normal and Binomial distribution functions is extended to cover the Poisson distribution function; new quantile function inequalities are then obtained for both distributions. Exponential bounds—which improve upon the Chernoff-Hoeffding inequalities by a factor of at least two—are also obtained for both distributions.

2018 ◽  
Vol 70 (2) ◽  
pp. 136-154
Author(s):  
Suchandan Kayal ◽  
S. M. Sunoj ◽  
B. Vineshkumar

There are several statistical models which have explicit quantile functions, but do not have manageable cumulative distribution functions. For example, Govindarajulu, various forms of lambda, and power-Pareto distributions. Thus, to study the reliability measures for such kind of distributions, a quantile-based tool is essentially required. In this article, we consider quantile version of some well- known reliability measures in the reversed time scale. We study stochastic orders based on the reversed hazard quantile function and the mean inactivity quantile time function. Further, we discuss relative reversed hazard quantile function order, likelihood quantile ratio order, and elasticity quantile order. Connections between the newly proposed orders and the existing stochastic orders are established. AMS 2010 Subject Classification: 60E15, 62E10


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245627
Author(s):  
Emrah Altun ◽  
M. El-Morshedy ◽  
M. S. Eliwa

A new distribution defined on (0,1) interval is introduced. Its probability density and cumulative distribution functions have simple forms. Thanks to its simple forms, the moments, incomplete moments and quantile function of the proposed distribution are derived and obtained in explicit forms. Four parameter estimation methods are used to estimate the unknown parameter of the distribution. Besides, simulation study is implemented to compare the efficiencies of these parameter estimation methods. More importantly, owing to the proposed distribution, we provide an alternative regression model for the bounded response variable. The proposed regression model is compared with the beta and unit-Lindley regression models based on two real data sets.


2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


2021 ◽  
Vol 13 (6) ◽  
pp. 1096
Author(s):  
Soi Ahn ◽  
Sung-Rae Chung ◽  
Hyun-Jong Oh ◽  
Chu-Yong Chung

This study aimed to generate a near real time composite of aerosol optical depth (AOD) to improve predictive model ability and provide current conditions of aerosol spatial distribution and transportation across Northeast Asia. AOD, a proxy for aerosol loading, is estimated remotely by various spaceborne imaging sensors capturing visible and infrared spectra. Nevertheless, differences in satellite-based retrieval algorithms, spatiotemporal resolution, sampling, radiometric calibration, and cloud-screening procedures create significant variability among AOD products. Satellite products, however, can be complementary in terms of their accuracy and spatiotemporal comprehensiveness. Thus, composite AOD products were derived for Northeast Asia based on data from four sensors: Advanced Himawari Imager (AHI), Geostationary Ocean Color Imager (GOCI), Moderate Infrared Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS). Cumulative distribution functions were employed to estimate error statistics using measurements from the Aerosol Robotic Network (AERONET). In order to apply the AERONET point-specific error, coefficients of each satellite were calculated using inverse distance weighting. Finally, the root mean square error (RMSE) for each satellite AOD product was calculated based on the inverse composite weighting (ICW). Hourly AOD composites were generated (00:00–09:00 UTC, 2017) using the regression equation derived from the comparison of the composite AOD error statistics to AERONET measurements, and the results showed that the correlation coefficient and RMSE values of composite were close to those of the low earth orbit satellite products (MODIS and VIIRS). The methodology and the resulting dataset derived here are relevant for the demonstrated successful merging of multi-sensor retrievals to produce long-term satellite-based climate data records.


Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Thabet Abdeljawad ◽  
Saima Rashid ◽  
Zakia Hammouch ◽  
İmdat İşcan ◽  
Yu-Ming Chu

Abstract The present article addresses the concept of p-convex functions on fractal sets. We are able to prove a novel auxiliary result. In the application aspect, the fidelity of the local fractional is used to establish the generalization of Simpson-type inequalities for the class of functions whose local fractional derivatives in absolute values at certain powers are p-convex. The method we present is an alternative in showing the classical variants associated with generalized p-convex functions. Some parts of our results cover the classical convex functions and classical harmonically convex functions. Some novel applications in random variables, cumulative distribution functions and generalized bivariate means are obtained to ensure the correctness of the present results. The present approach is efficient, reliable, and it can be used as an alternative to establishing new solutions for different types of fractals in computer graphics.


2011 ◽  
Vol 18 (2) ◽  
pp. 223-234 ◽  
Author(s):  
R. Haas ◽  
K. Born

Abstract. In this study, a two-step probabilistic downscaling approach is introduced and evaluated. The method is exemplarily applied on precipitation observations in the subtropical mountain environment of the High Atlas in Morocco. The challenge is to deal with a complex terrain, heavily skewed precipitation distributions and a sparse amount of data, both spatial and temporal. In the first step of the approach, a transfer function between distributions of large-scale predictors and of local observations is derived. The aim is to forecast cumulative distribution functions with parameters from known data. In order to interpolate between sites, the second step applies multiple linear regression on distribution parameters of observed data using local topographic information. By combining both steps, a prediction at every point of the investigation area is achieved. Both steps and their combination are assessed by cross-validation and by splitting the available dataset into a trainings- and a validation-subset. Due to the estimated quantiles and probabilities of zero daily precipitation, this approach is found to be adequate for application even in areas with difficult topographic circumstances and low data availability.


Sign in / Sign up

Export Citation Format

Share Document