scholarly journals Composite Aerosol Optical Depth Mapping over Northeast Asia from GEO-LEO Satellite Observations

2021 ◽  
Vol 13 (6) ◽  
pp. 1096
Author(s):  
Soi Ahn ◽  
Sung-Rae Chung ◽  
Hyun-Jong Oh ◽  
Chu-Yong Chung

This study aimed to generate a near real time composite of aerosol optical depth (AOD) to improve predictive model ability and provide current conditions of aerosol spatial distribution and transportation across Northeast Asia. AOD, a proxy for aerosol loading, is estimated remotely by various spaceborne imaging sensors capturing visible and infrared spectra. Nevertheless, differences in satellite-based retrieval algorithms, spatiotemporal resolution, sampling, radiometric calibration, and cloud-screening procedures create significant variability among AOD products. Satellite products, however, can be complementary in terms of their accuracy and spatiotemporal comprehensiveness. Thus, composite AOD products were derived for Northeast Asia based on data from four sensors: Advanced Himawari Imager (AHI), Geostationary Ocean Color Imager (GOCI), Moderate Infrared Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS). Cumulative distribution functions were employed to estimate error statistics using measurements from the Aerosol Robotic Network (AERONET). In order to apply the AERONET point-specific error, coefficients of each satellite were calculated using inverse distance weighting. Finally, the root mean square error (RMSE) for each satellite AOD product was calculated based on the inverse composite weighting (ICW). Hourly AOD composites were generated (00:00–09:00 UTC, 2017) using the regression equation derived from the comparison of the composite AOD error statistics to AERONET measurements, and the results showed that the correlation coefficient and RMSE values of composite were close to those of the low earth orbit satellite products (MODIS and VIIRS). The methodology and the resulting dataset derived here are relevant for the demonstrated successful merging of multi-sensor retrievals to produce long-term satellite-based climate data records.

2015 ◽  
Vol 8 (10) ◽  
pp. 4083-4110 ◽  
Author(s):  
R. C. Levy ◽  
L. A. Munchak ◽  
S. Mattoo ◽  
F. Patadia ◽  
L. A. Remer ◽  
...  

Abstract. To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March–April–May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.


2017 ◽  
Vol 57 (7) ◽  
pp. 1525 ◽  
Author(s):  
Matthew T. Harrison ◽  
Karen M. Christie ◽  
Richard P. Rawnsley

A priori knowledge of seasonal pasture growth rates helps livestock farmers plan with pasture supply and feed budgeting. Longer forecasts may allow managers more lead time, yet inaccurate forecasts could lead to counterproductive decisions and foregone income. By using climate forecasts generated from historical archives or the global circulation model (GCM) called the Predictive Ocean Atmosphere Model for Australia (POAMA), we simulated pasture growth rates in a whole-farm model and compared growth-rate forecasts with growth-rate hindcasts (viz. retrospective forecasts). Hindcast pasture growth rates were generated using posterior weather data measured at two sites in north-western Tasmania, Australia. Forecasts were made on a monthly basis for durations of 30, 60 and 90 days. Across sites, forecasting approaches and durations, there were no significant differences between simulated growth-rate forecasts and hindcasts when our statistical inference was conducted using either the Kolmogorov–Smirnov statistic or empirical cumulative distribution functions. However, given that both of these tests were calculated by comparing growth-rate hindcasts with monthly distributions of forecasts, we also examined linear correlations between monthly hindcast values and median monthly growth-rate forecasts. Using this approach, we found a higher correlation between hindcasts and median monthly forecasts for 30 days than for 60 or 90 days, suggesting that monthly growth-rate forecasts provide more skilful predictions than forecast durations of 2 or 3 months. The range in monthly growth-rate forecasts at 30 days was less than that at 60 or 90 days, further reinfocing the aforementioned result. The strength of the correlation between growth-rate hindcasts and median monthly forecasts from the historical approach was similar to that generated using POAMA data. Overall, the present study found that (1) statistical methods of comparing forecast data with hindcast data are important, particularly if the former is a distribution whereas the latter is a single value, (2) 1-month growth-rate forecasts have less uncertainty than forecast durations of 2 or 3 months, and (3) there is little difference between pasture growth rates simulated using climate data from either historical records or from GCMs. To test the generality of these conclusions, the study should be extended to other dairy regions. Including more regions would both enable studies of sites with greater intra-seasonal climate variability, but also better highlight the impact of seasonal and regional variation in forecast skill of POAMA as applied in our forecasting methods.


2017 ◽  
Author(s):  
Jerónimo Escribano ◽  
Olivier Boucher ◽  
Frédéric Chevallier ◽  
Nicolás Huneeus

Abstract. Mineral dust is the major continental contributor to the global atmospheric aerosol burden with important effects on the climate system. Regionally, a large fraction of the emitted dust is produced in North Africa, however the total emission flux from this region is still highly uncertain. In order to reduce these uncertainties, emission estimates through top-down approaches (i.e., usually models constrained by observations) had been successfully developed and implemented. Such studies usually rely on a single observational dataset and propagate the possible observational errors of this dataset onto the emission estimates. In this study, aerosol optical depth (AOD) products from five different satellites are assimilated one by one in a source inversion system to estimate dust emission fluxes over northern Africa and the Arabian Peninsula. We estimate mineral dust emissions for the year 2006 and discuss the impact of the assimilated dataset on the analysis. We find a relatively large dispersion in flux estimates among the five experiments, which can likely be attributed to differences in the assimilated observation datasets and their associated error statistics. We also show how the assimilation of a variety of AOD products can help to identify systematic errors in models.


2020 ◽  
Author(s):  
Hyunkwang Lim ◽  
Sujung Go ◽  
Jhoon Kim ◽  
Myungje Choi ◽  
Seoyoung Lee ◽  
...  

Abstract. The Yonsei AErosol Retrieval (YAER) algorithm for the Geostationary Ocean Color Imager (GOCI) retrieves aerosol optical properties only over dark surfaces, so it is important to mask pixels with bright surfaces. The Advanced Himawari Imager (AHI) is equipped with three shortwave-infrared and nine infrared channels, which is advantageous for bright-pixel masking. In addition, multiple visible and near-infrared channels provide a great advantage in aerosol property retrieval from the AHI and GOCI. By applying the YAER algorithm to 10 minutes AHI or 1 hour GOCI data at 6 km × 6 km resolution, diurnal variations and aerosol transport can be observed, which has not previously been possible from low-earth-orbit satellites. This study attempted to estimate the optimal aerosol optical depth (AOD) for East Asia by data fusion, taking into account satellite retrieval uncertainty. The data fusion involved two steps: (1) analysis of error characteristics of each retrieved result with respect to the ground-based Aerosol Robotic Network (AERONET), and bias correction based on normalized difference vegetation indexes; and (2) estimation of the fused product using ensemble-mean and maximum-likelihood estimation methods. Fused results show a better statistics in terms of fraction within the expected error, correlation coefficient, root-mean-square error, median bias error than the retrieved result for each product.


2017 ◽  
Vol 17 (11) ◽  
pp. 7111-7126 ◽  
Author(s):  
Jerónimo Escribano ◽  
Olivier Boucher ◽  
Frédéric Chevallier ◽  
Nicolás Huneeus

Abstract. Mineral dust is the major continental contributor to the global atmospheric aerosol burden with important effects on the climate system. Regionally, a large fraction of the emitted dust is produced in northern Africa; however, the total emission flux from there is still highly uncertain. In order to reduce these uncertainties, emission estimates through top-down approaches (i.e. usually models constrained by observations) have been successfully developed and implemented. Such studies usually rely on a single observational dataset and propagate the possible observational errors of this dataset onto the emission estimates. In this study, aerosol optical depth (AOD) products from five different satellites are assimilated one by one in a source inversion system to estimate dust emission fluxes over northern Africa and the Arabian Peninsula. We estimate mineral dust emissions for the year 2006 and discuss the impact of the assimilated dataset on the analysis. We find a relatively large dispersion in flux estimates among the five experiments, which can likely be attributed to differences in the assimilated observation datasets and their associated error statistics.


2012 ◽  
Vol 12 (3) ◽  
pp. 8465-8501 ◽  
Author(s):  
N. C. Hsu ◽  
R. Gautam ◽  
A. M. Sayer ◽  
C. Bettenhausen ◽  
C. Li ◽  
...  

Abstract. Both sensor calibration and satellite retrieval algorithm play an important role in the ability to determine accurately long-term trends from satellite data. Owing to the unprecedented accuracy and long-term stability of its radiometric calibration, the SeaWiFS measurements exhibit minimal uncertainty with respect to sensor calibration. In this study, we take advantage of this well-calibrated set of measurements by applying a newly-developed aerosol optical depth (AOD) retrieval algorithm over land and ocean to investigate the distribution of AOD, and to identify emerging patterns and trends in global and regional aerosol loading during its 13-yr mission. Our results indicate that the averaged AOD trend over global ocean is weakly positive from 1998 to 2010 and comparable to that observed by MODIS but opposite in sign to that observed by AVHRR during overlapping years. On a smaller scale, different trends are detected for different regions. For example, large upward trends are found over the Arabian Peninsula that indicate a strengthening of the seasonal cycle of dust emission and transport processes over the whole region as well as over downwind oceanic regions. In contrast, a negative-neutral tendency is observed over the desert/arid Saharan region as well as in the associated dust outflow over the North Atlantic. Additionally, we found decreasing trends over the Eastern US and Europe, and increasing trends over countries such as China and India that are experiencing rapid economic development. In general, these results are consistent with those derived from ground-based AERONET measurements.


2010 ◽  
Vol 3 (1) ◽  
pp. 785-819 ◽  
Author(s):  
M. Riffler ◽  
C. Popp ◽  
A. Hauser ◽  
F. Fontana ◽  
S. Wunderle

Abstract. The Advanced Very High Resolution Radiometer (AVHRR) carried on board the National Oceanic and Atmospheric Administration (NOAA) and the Meteorological Operational Satellite (MetOp) polar orbiting satellites is the only instrument offering more than 25 years of satellite data to analyse aerosols on a daily basis. The present study assessed a modified AVHRR aerosol optical depth τa retrieval over land. The initial approach has used a relationship between Sun photometer measurements from the Aerosol Robotic Network (AERONET) and the satellite data to post-process the retrieved τa. Herein a stand-alone procedure, which is more suitable for the pre-AERONET era, is presented. In addition, the estimation of surface reflectance, threshold values, and the aerosol model are adapted. The method's cross-platform applicability was tested by validating τa from NOAA-17 and NOAA-18 AVHRR at 15 AERONET sites in Central Europe (40.5° N–50° N, 0° E–17° E) from August 2005 to December 2007. Furthermore, the accuracy of the AVHRR retrieval was related to products from two newer instruments, the Medium Resolution Imaging Spectrometer (MERIS) on board the Environmental Satellite (ENVISAT) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Aqua/Terra. Considering the linear correlation coefficient R, the AVHRR results were similar to those of MERIS with even lower root mean square error RMSE. Not surprisingly, MODIS, with its high spectral coverage gave the highest R and lowest RMSE. Regarding monthly averaged τa, the results were ambiguous. Focusing on small-scale structures, R was reduced for all sensors, whereas the RMSE solely for MERIS substantially increased. Regarding larger areas like Central Europe, the error statistics were similar to the individual match-ups. This was mainly explained with sampling issues. With the successful validation of AVHRR we are now able to concentrate on our large data archive dating back to 1985. This is a unique opportunity for both climate and air pollution studies over land surfaces.


Sign in / Sign up

Export Citation Format

Share Document