scholarly journals Side-by-Side Comparison of the Biological Characteristics of Human Umbilical Cord and Adipose Tissue-Derived Mesenchymal Stem Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Li Hu ◽  
Jingqiong Hu ◽  
Jiajia Zhao ◽  
Jiarong Liu ◽  
Weixiang Ouyang ◽  
...  

Both human adipose tissue-derived mesenchymal stem cells (ASCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) have been explored as attractive mesenchymal stem cells (MSCs) sources, but very few parallel comparative studies of these two cell types have been made. We designed a side-by-side comparative study by isolating MSCs from the adipose tissue and umbilical cords from mothers delivering full-term babies and thus compared the various biological aspects of ASCs and UC-MSCs derived from the same individual, in one study. Both types of cells expressed cell surface markers characteristic of MSCs. ASCs and UC-MSCs both could be efficiently induced into adipocytes, osteoblasts, and neuronal phenotypes. While there were no significant differences in their osteogenic differentiation, the adipogenesis of ASCs was more prominent and efficient than UC-MSCs. In the meanwhile, ASCs responded better to neuronal induction methods, exhibiting the higher differentiation rate in a relatively shorter time. In addition, UC-MSCs exhibited a more prominent secretion profile of cytokines than ASCs. These results indicate that although ASCs and UC-MSCs share considerable similarities in their immunological phenotype and pluripotentiality, certain biological differences do exist, which might have different implications for future cell-based therapy.

2019 ◽  
Vol 6 (4) ◽  
pp. 3131-3140 ◽  
Author(s):  
Liem Hieu Pham ◽  
Ngoc Bich Vu ◽  
Phuc Van Pham

Introduction: Human mesenchymal stem cells (MSCs) are the most popular stem cells applied in disease treatment. MSCs can be isolated and in vitro expanded from various sources such as bone marrow, peripheral blood, umbilical cord blood, umbilical cord tissue, and adipose tissue. According to Dominici et al. (2006), MSCs should express CD105, an essential marker used to confirm MSCs. However, some recent studies have show that MSCs contained a subpopulation that is negative for CD105. This study aimed to compare the immune modulation capacity of 2 populations of CD105 positive (CD105+) and negative (CD105-) MSCs derived from 2 sources: human adipose tissue (AT) and human umbilical cord (UC). Methods: MSCs were isolated from human adipose tissues (adipose tissue-derived mesenchymal stem cells – AT-MSCs) and human umbilical cord (umbilical cord-derived mesenchymal stem cells – UC-MSCs) according to previously published protocols. The two populations of CD105- and CD105+ MSCs were sorted based on the expression of CD105 from AT-MSCs and UC-MSCs. Four populations of CD105 (AT-MSCs, CD105+ AT-MSCs, CD105- UC-MSCs, and CD105+ UC-MSCs) were used to compare the phenotype as well as in vitro differentiation potential; then they were used to evaluate the immune modulation capacity by allogeneic T cell suppression and cytokine release. Results: The results showed that CD105- MSCs from AT and UC exhibited an immune modulation capacity that was much stronger than CD105+ MSCs from the same source of AT and UC. The strong immunomodulation of CD105- MSCs may relate to autocrine production of TGF-beta 1 by MSCs. Conclusion: The results suggested that CD105- MSCs are promising MSCs for application in regenerative medicine, especially for the treatment of diseases related to inflammation.  


2015 ◽  
Vol 15 (9) ◽  
pp. 1293-1306 ◽  
Author(s):  
Tan Li ◽  
Mingxu Xia ◽  
Yuanyuan Gao ◽  
Yanting Chen ◽  
Yun Xu

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Chao Yang ◽  
Deqiang Lei ◽  
Weixiang Ouyang ◽  
Jinghua Ren ◽  
Huiyu Li ◽  
...  

Human mesenchymal stem cells (MSCs) have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs). We found (1) MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2) MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3) real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4) furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.


2017 ◽  
Vol 43 (3) ◽  
pp. 891-904 ◽  
Author(s):  
Jie He ◽  
Guang-ping Ruan ◽  
Xiang Yao ◽  
Ju-fen Liu ◽  
Xiang-qing Zhu ◽  
...  

Background/Aims: Stem cell-based therapy is attractive in many clinical studies, but current data on the safety of stem cell applications remains inadequate. This study observed the safety, immunological effect of cynomolgus monkey umbilical cord mesenchymal stem cells (mUC-MSCs) injected into cynomolgus monkeys, in order to evaluate the safety of human umbilical cord mesenchymal stem cells (hUC-MSCs) prepared for human clinical application. Methods: Eighteen cynomolgus monkeys were divided into three groups. Group 1 is control group, Group 2 is low-dose group, Group 3 is high-dose group. After repeated administrations of mUC-MSCs, cynomolgus monkeys were observed for possible toxic reactions. Results: During the experiment, no animal died. There were no toxicological abnormalities in body weight, body temperature, electrocardiogram, coagulation and pathology. In the groups 2 and 3, AST and CK transiently increased, and serum inorganic P slightly decreased. All animals were able to recover at 28 days after the infusion was stopped. In the groups 2 and 3, CD3+ and IL-6 levels significantly increased, and recovery was after 28 days of infusion. There were no obvious pathological changes associated with the infusion of cells in the general and microscopic examinations. Conclusions: The safe dosage of repeated intravenous infusion of mUC-MSCs in cynomolgus monkeys is 1.0 × 107/kg, which is 10 times of that in clinical human use.


2005 ◽  
Vol 16 (3) ◽  
pp. 1491-1499 ◽  
Author(s):  
Masanori Terai ◽  
Taro Uyama ◽  
Tadashi Sugiki ◽  
Xiao-Kang Li ◽  
Akihiro Umezawa ◽  
...  

Human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) are expected to serve as an excellent alternative to bone marrow-derived human mesenchymal stem cells. However, it is difficult to study them because of their limited life span. To overcome this problem, we attempted to produce a strain of UCBMSCs with a long life span and to investigate whether the strain could maintain phenotypes in vitro. UCBMSCs were infected with retrovirus carrying the human telomerase reverse transcriptase (hTERT) to prolong their life span. The UCBMSCs underwent 30 population doublings (PDs) and stopped dividing at PD 37. The UCBMSCs newly established with hTERT (UCBTERTs) proliferated for >120 PDs. The p16INK4a/RB braking pathway leading to senescence can be inhibited by introduction of Bmi-1, a polycomb-group gene, and human papillomavirus type 16 E7, but the extension of the life span of the UCBMSCs with hTERT did not require inhibition of the p16INK4a/RB pathway. The characteristics of the UCBTERTs remained unchanged during the prolongation of life span. UCBTERTs provide a powerful model for further study of cellular senescence and for future application to cell-based therapy by using umbilical cord blood cells.


2017 ◽  
Vol 64 (2) ◽  
Author(s):  
Alicja Zajdel ◽  
Magdalena Kałucka ◽  
Edyta Kokoszka-Mikołaj ◽  
Adam Wilczok

Induced osteogenesis of mesenchymal stem cells (MSCs) may provide an important tool for bone injures treatment. Human umbilical cord and adipose tissue are routinely discarded as clinical waste and may be used as uncontroversial MSCs sources. It still remains to be verified which source of MSCs is the most suitable for bone regeneration.The aim of this research was to investigate the osteogenic potential of human MSCs derived from adipose tissue (ASCs) and Wharton’s jelly of the human umbilical cord (WJ-MSCs) differentiated under the same conditions.Osteogenic differentiation of MSCs was detected and quantified by ARS staining for calcium deposition and alkaline phosphatase (ALP) activity, osteoprotegerin (OPG), and osteocalcin (OC) secretion measurements. Under osteogenic conditions the measured ALP activity and calcium deposition were significantly higher in ASCs than in WJ-MSCs, while the OPG and OC secretion were higher in WJ-MSCs vs. ASCs. Low concentrations of OPG and high levels of OC in ASCs and WJ-MSCs, prove that these cells reached an advanced stage of the osteogenic differentiation. The levels of OC secreted by ASCs were lower than by WJ-MSCs what indicates that the differentiation process of the ASCs reached the stage when the extracellular matrix is overproduced and the down-regulation of OC begins.Both cell types, ASCs and WJ-MSCs possess potential to differentiate towards the osteogenic lineage. However, the observed differences in the levels of osteogenic markers suggest that ASCs may be better candidates for cell-based osteogenesis than WJ-MSCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xingfu Li ◽  
Yujie Liang ◽  
Xiao Xu ◽  
Jianyi Xiong ◽  
Kan Ouyang ◽  
...  

Background. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) possess great promise as a therapeutic to repair damaged cartilage. Direct intra-articular injection of mesenchymal stem cells has been shown to reduce cartilage damage and is advantageous as surgical implantation and associated side effects can be avoided using this approach. However, the efficacy of stem cell-based therapy for cartilage repair depends highly on the direct interactions of these stem cells with chondrocytes in the joint. In this study, we have carried out an in vitro cell-to-cell contact coculture study with human articular chondrocytes (hACs) and hUC-MSCs, with the goal of this study being to evaluate interactions between hACs and hUC-MSCs. Methods. Low-density monolayer cultures of hUC-MSCs and hACs were mixed at a ratio of 1 : 1 in direct cell-to-cell contact groups. Results were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. Results. A mixed coculture of hUC-MSCs and hACs was found to exhibit synergistic interactions with enhanced differentiation of hUC-MSCs and reduced dedifferentiation of chondrocytes. Mixed cultures after 21 days were found to exhibit sufficient chondrogenic induction. Conclusions. The results from this study suggest the presence of mutual effects between hUC-MSCs and hACs even culture at low density and provide further support for the use of intra-articular injection strategies for cartilage defect treatment.


Sign in / Sign up

Export Citation Format

Share Document