scholarly journals A Wavelet-Based Robust Relevance Vector Machine Based on Sensor Data Scheduling Control for Modeling Mine Gas Gushing Forecasting on Virtual Environment

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Wang Ting ◽  
Cai Lin-qin ◽  
Fu Yao ◽  
Zhu Tingcheng

It is wellknown that mine gas gushing forecasting is very significant to ensure the safety of mining. A wavelet-based robust relevance vector machine based on sensor data scheduling control for modeling mine gas gushing forecasting is presented in the paper. Morlet wavelet function can be used as the kernel function of robust relevance vector machine. Mean percentage error has been used to measure the performance of the proposed method in this study. As the mean prediction error of mine gas gushing of the WRRVM model is less than 1.5%, and the mean prediction error of mine gas gushing of the RVM model is more than 2.5%, it can be seen that the prediction accuracy for mine gas gushing of the WRRVM model is better than that of the RVM model.

Medicina ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 319
Author(s):  
Ivajlo Popov ◽  
Veronika Popova ◽  
Juraj Sekac ◽  
Vladimir Krasnik

Background and Objectives: To evaluate the performance of intraocular lenses (IOLs) using power calculation formulas on different types of IOL. Materials and Methods: 120 eyes and four IOL types (BioLine Yellow Accurate Aspheric IOL (i-Medical), TECNIS ZCB00, TECNIS ZA9003 (Johnson & Johnson) (3-piece IOL) and Softec HD (Lenstec)) were analyzed. The performance of Haigis, Barret Universal II and SKR-II formulas were compared between IOL types. The mean prediction error (ME) and mean absolute prediction error (MAE) were analyzed. Results: The overall percentage of eyes predicted within ±0.25 diopters (D) was 40.8% for Barret; 39.2% Haigis and 31.7% for SRK-II. Barret and Haigis had a significantly lower MAE than SRK-II (p < 0.05). The results differed among IOL types. The largest portion of eyes predicted within ±0.25 D was with the Barret formula in ZCB00 (33.3%) and ZA9003 (43.3%). Haigis was the most accurate in Softec HD (50%) and SRK-II in Biolline Yellow IOL (50%). ZCB00 showed a clinically significant hypermetropic ME compared to other IOLs. Conclusions: In general, Barret formulas had the best performance as a universal formula. However, the formula should be chosen according to the type of IOL in order to obtain the best results. Constant optimizations are necessary for the Tecnis IOL ZCB00 and ZA9003, as all of the analyzed formulas achieved a clinically significant poor performance in this type of IOL. ZCB00 also showed a hypermetropic shift in ME in all the formulas.


2019 ◽  
Vol 26 (3) ◽  
pp. 543-548
Author(s):  
Toshihisa Nakashima ◽  
Takayuki Ohno ◽  
Keiichi Koido ◽  
Hironobu Hashimoto ◽  
Hiroyuki Terakado

Background In cancer patients treated with vancomycin, therapeutic drug monitoring is currently performed by the Bayesian method that involves estimating individual pharmacokinetics from population pharmacokinetic parameters and trough concentrations rather than the Sawchuk–Zaske method using peak and trough concentrations. Although the presence of malignancy influences the pharmacokinetic parameters of vancomycin, it is unclear whether cancer patients were included in the Japanese patient populations employed to estimate population pharmacokinetic parameters for this drug. The difference of predictive accuracy between the Sawchuk–Zaske and Bayesian methods in Japanese cancer patients is not completely understood. Objective To retrospectively compare the accuracy of predicting vancomycin concentrations between the Sawchuk–Zaske method and the Bayesian method in Japanese cancer patients. Methods Using data from 48 patients with various malignancies, the predictive accuracy (bias) and precision of the two methods were assessed by calculating the mean prediction error, the mean absolute prediction error, and the root mean squared prediction error. Results Prediction of the trough and peak vancomycin concentrations by the Sawchuk–Zaske method and the peak concentration by the Bayesian method showed a bias toward low values according to the mean prediction error. However, there were no significant differences between the two methods with regard to the changes of the mean prediction error, mean absolute prediction error, and root mean squared prediction error. Conclusion The Sawchuk–Zaske method and Bayesian method showed similar accuracy for predicting vancomycin concentrations in Japanese cancer patients.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 834
Author(s):  
J.J. van Kleef ◽  
H.G. van den Boorn ◽  
R.H.A. Verhoeven ◽  
K. Vanschoenbeek ◽  
A. Abu-Hanna ◽  
...  

The SOURCE prediction model predicts individualised survival conditional on various treatments for patients with metastatic oesophageal or gastric cancer. The aim of this study was to validate SOURCE in an external cohort from the Belgian Cancer Registry. Data of Belgian patients diagnosed with metastatic disease between 2004 and 2014 were extracted (n = 4097). Model calibration and discrimination (c-indices) were determined. A total of 2514 patients with oesophageal cancer and 1583 patients with gastric cancer with a median survival of 7.7 and 5.4 months, respectively, were included. The oesophageal cancer model showed poor calibration (intercept: 0.30, slope: 0.42) with an absolute mean prediction error of 14.6%. The mean difference between predicted and observed survival was −2.6%. The concordance index (c-index) of the oesophageal model was 0.64. The gastric cancer model showed good calibration (intercept: 0.02, slope: 0.91) with an absolute mean prediction error of 2.5%. The mean difference between predicted and observed survival was 2.0%. The c-index of the gastric cancer model was 0.66. The SOURCE gastric cancer model was well calibrated and had a similar performance in the Belgian cohort compared with the Dutch internal validation. However, the oesophageal cancer model had not. Our findings underscore the importance of evaluating the performance of prediction models in other populations.


Author(s):  
Mohammed Habib Al- Sharoot ◽  
Emaan Yousif Abdoon

The variations in exchange rate, especially the sudden unexpected increases and decreases, have significant impact on the national economy of any country. Iraq is no exception; therefore, the accurate forecasting of exchange rate of Iraqi dinar to US dollar plays an important role in the planning and decision-making processes as well as the maintenance of a stable economy in Iraq. This research aims to compare Box-Jenkins methodology to neural networks in terms of forecasting the exchange rate of Iraqi dinar to US dollar based on data provided by the Iraqi Central Bank for the period  30/01/2004 and 30/12/2014. Based on the Mean Square Error (MSE), the Mean Absolute Error (MAE), and the Mean Absolute Percentage Error (MAPE) as criteria to compare the two methodologies, it was concluded that Box-Jenkins is better than neural network approach in forecasting.


1993 ◽  
Vol 44 (4) ◽  
pp. 609 ◽  
Author(s):  
R Boer ◽  
DJ Fletcher ◽  
LC Campbell

Rainfall is an important variable in the wheat production areas of Australia. This analysis examines, firstly, the pattern of rainfall over 2.3 million ha of a high-quality wheat-producing region, and secondly, develops regression equations for rainfall prediction over this region. Most of the variation in rainfall pattern across the region is accounted for by differences in October-to-March (summer) rainfall and in April-to-September (winter) rainfall. The summer rainfall differences account for over two thirds of the variation. Based on these two rainfall periods, a partitioning of the study area reveals five distinct regions. The second part of the analysis uses multiple regression to provide a set of equations for rainfall prediction at any location in the region, for a number of rainfall periods. These equations use altitude, longitude and latitude as predictors. Nearly all of the equations explain between 80% and 94% of the variation in rainfall. Differences between regions are accounted for in the analysis, making the equations widely applicable. The validity of the mean rainfall equations was tested on three further sites: the mean prediction error was 6.9%. This approach may be applicable where large land masses with similar geographical features occur.


2019 ◽  
Vol 8 (11) ◽  
pp. 495 ◽  
Author(s):  
Xiong ◽  
Li ◽  
Cheng ◽  
Ye ◽  
Zhang

Population is a crucial basis for the study of sociology, geography, environmental studies, and other disciplines; accurate estimates of population are of great significance for many countries. Many studies have developed population spatialization methods. However, little attention has been paid to the differential treatment of the spatial stationarity and non-stationarity of variables. Based on a semi-parametric, geographically weighted regression model (s-GWR), this paper attempts to construct a novel, precise population spatialization method considering parametric stationarity to enhance spatialization accuracy; the southwestern area of China is used as the study area for comparison and validation. In this study, the night-time light and land use data were integrated as weighting factors to establish the population model; based on the analysis of variables characteristics, the method uses an s-GWR model to deal with the spatial stationarity of variables and reduce regional errors. Finally, the spatial distribution of the population (SSDP) of the study area in 2010 was obtained. When assessed against the traditional regression models, the model that considers parametric stationarity is more accurate than the models without it. Furthermore, the comparison with three commonly-used population grids reveals that the SSDP has a percentage error close to zero at the county level, while at the township level, the mean relative error of SSDP is 33.63%, and that is >15% better than other population grids. Thus, this study suggests that the proposed method can produce a more accurate population distribution.


2002 ◽  
Vol 27 (5) ◽  
pp. 517-524 ◽  
Author(s):  
AUGUSTO CARLOS S. PINTO ◽  
EDSON A. POZZA ◽  
PAULO E. DE SOUZA ◽  
ADÉLIA A. A. POZZA ◽  
VIVIANE TALAMINI ◽  
...  

The objective of this paper was to evaluate the potential of neural networks (NN) as an alternative method to the basic epidemiological approach to describe epidemics of coffee rust. The NN was developed from the intensities of coffee (Coffea arabica) rust along with the climatic variables collected in Lavras-MG between 13 February 1998 and 20 April 2001. The NN was built with climatic variables that were either selected in a stepwise regression analysis or by the Braincel® system, software for NN building. Fifty-nine networks and 26 regression models were tested. The best models were selected based on small values of the mean square deviation (MSD) and of the mean prediction error (MPE). For the regression models, the highest coefficients of determination (R²) were used. The best model developed with neural networks had an MSD of 4.36 and an MPE of 2.43%. This model used the variables of minimum temperature, production, relative humidity of the air, and irradiance 30 days before the evaluation of disease. The best regression model was developed from 29 selected climatic variables in the network. The summary statistics for this model were: MPE=6.58%, MSE=4.36, and R²=0.80. The elaborated neural networks from a time series also were evaluated to describe the epidemic. The incidence of coffee rust at four previous fortnights resulted in a model with MPE=4.72% and an MSD=3.95.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4839
Author(s):  
Aritz Bilbao-Jayo ◽  
Aitor Almeida ◽  
Ilaria Sergi ◽  
Teodoro Montanaro ◽  
Luca Fasano ◽  
...  

In this work we performed a comparison between two different approaches to track a person in indoor environments using a locating system based on BLE technology with a smartphone and a smartwatch as monitoring devices. To do so, we provide the system architecture we designed and describe how the different elements of the proposed system interact with each other. Moreover, we have evaluated the system’s performance by computing the mean percentage error in the detection of the indoor position. Finally, we present a novel location prediction system based on neural embeddings, and a soft-attention mechanism, which is able to predict user’s next location with 67% accuracy.


Author(s):  
Grace Ashley ◽  
Nii Attoh-Okine

Every year, the U.S. government provides several billions of dollars in the form of federal funding for transportation services in the U.S.A. Decision making with regard to the use of these funds largely depends on performance indicators like average annual daily traffic (AADT). In this paper, Bayesian nonparametric models are developed through machine learning for the estimation of AADT on bridges. The effect of hyperparameter choice on the accuracy of estimations produced by Bayesian nonparametric models is also assessed. The predictions produced using the Bayesian nonparametric approach are then compared with predictions from a popular Frequentist approach for the selected bridges. Evaluation metrics like the mean absolute percentage error are subsequently employed in model evaluation. Based on the results, the best methods for AADT forecasting for the selected bridges are recommended.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ari Wibisono ◽  
Petrus Mursanto ◽  
Jihan Adibah ◽  
Wendy D. W. T. Bayu ◽  
May Iffah Rizki ◽  
...  

Abstract Real-time information mining of a big dataset consisting of time series data is a very challenging task. For this purpose, we propose using the mean distance and the standard deviation to enhance the accuracy of the existing fast incremental model tree with the drift detection (FIMT-DD) algorithm. The standard FIMT-DD algorithm uses the Hoeffding bound as its splitting criterion. We propose the further use of the mean distance and standard deviation, which are used to split a tree more accurately than the standard method. We verify our proposed method using the large Traffic Demand Dataset, which consists of 4,000,000 instances; Tennet’s big wind power plant dataset, which consists of 435,268 instances; and a road weather dataset, which consists of 30,000,000 instances. The results show that our proposed FIMT-DD algorithm improves the accuracy compared to the standard method and Chernoff bound approach. The measured errors demonstrate that our approach results in a lower Mean Absolute Percentage Error (MAPE) in every stage of learning by approximately 2.49% compared with the Chernoff Bound method and 19.65% compared with the standard method.


Sign in / Sign up

Export Citation Format

Share Document