scholarly journals Altered Functional Connectivity of the Primary Visual Cortex in Subjects with Amblyopia

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Kun Ding ◽  
Yong Liu ◽  
Xiaohe Yan ◽  
Xiaoming Lin ◽  
Tianzi Jiang

Amblyopia, which usually occurs during early childhood and results in poor or blurred vision, is a disorder of the visual system that is characterized by a deficiency in an otherwise physically normal eye or by a deficiency that is out of proportion with the structural or functional abnormalities of the eye. Our previous study demonstrated alterations in the spontaneous activity patterns of some brain regions in individuals with anisometropic amblyopia compared to subjects with normal vision. To date, it remains unknown whether patients with amblyopia show characteristic alterations in the functional connectivity patterns in the visual areas of the brain, particularly the primary visual area. In the present study, we investigated the differences in the functional connectivity of the primary visual area between individuals with amblyopia and normal-sighted subjects using resting functional magnetic resonance imaging. Our findings demonstrated that the cerebellum and the inferior parietal lobule showed altered functional connectivity with the primary visual area in individuals with amblyopia, and this finding provides further evidence for the disruption of the dorsal visual pathway in amblyopic subjects.

2018 ◽  
Vol 25 (4) ◽  
pp. 298-313 ◽  
Author(s):  
Patrick J. Drew ◽  
Aaron T. Winder ◽  
Qingguang Zhang

Animals and humans continuously engage in small, spontaneous motor actions, such as blinking, whisking, and postural adjustments (“fidgeting”). These movements are accompanied by changes in neural activity in sensory and motor regions of the brain. The frequency of these motions varies in time, is affected by sensory stimuli, arousal levels, and pathology. These fidgeting behaviors can be entrained by sensory stimuli. Fidgeting behaviors will cause distributed, bilateral functional activation in the 0.01 to 0.1 Hz frequency range that will show up in functional magnetic resonance imaging and wide-field calcium neuroimaging studies, and will contribute to the observed functional connectivity among brain regions. However, despite the large potential of these behaviors to drive brain-wide activity, these fidget-like behaviors are rarely monitored. We argue that studies of spontaneous and evoked brain dynamics in awake animals and humans should closely monitor these fidgeting behaviors. Differences in these fidgeting behaviors due to arousal or pathology will “contaminate” ongoing neural activity, and lead to apparent differences in functional connectivity. Monitoring and accounting for the brain-wide activations by these behaviors is essential during experiments to differentiate fidget-driven activity from internally driven neural dynamics.


2021 ◽  
Author(s):  
Aarit Ahuja ◽  
Theresa M Desrochers ◽  
David Sheinberg

To engage with the world, we must regularly make predictions about the outcomes of physical scenes. How do we make these predictions? Recent evidence points to simulation - the idea that we can introspectively manipulate rich, mental models of the world - as one possible explanation for how such predictions are accomplished. While theories based on simulation are supported by computational models, neuroscientific evidence for simulation is lacking and many important questions remain. For instance, do simulations simply entail a series of abstract computations? Or are they supported by sensory representations of the objects that comprise the scene being simulated? We posit the latter and suggest that the process of simulating a sequence of physical interactions is likely to evoke an imagery-like envisioning of those interactions. Using functional magnetic resonance imaging, we demonstrate that when participants predict how a ball will fall through an obstacle-filled display, motion-sensitive brain regions are activated. We further demonstrate that this activity, which occurs even though no motion is being sensed, resembles activity patterns that arise while participants perceive the ball's motion. This finding suggests that the process of simulating the ball's movement is accompanied by a sensory representation of this movement. These data thus demonstrate that mental simulations recreate sensory depictions of how a physical scene is likely to unfold.


2021 ◽  
Author(s):  
Beatrice M. Jobst ◽  
Selen Atasoy ◽  
Adrián Ponce-Alvarez ◽  
Ana Sanjuán ◽  
Leor Roseman ◽  
...  

AbstractLysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical and pharmacological research within recent years. Human neuroimaging studies have shown fundamental changes in brain-wide functional connectivity and an expansion of dynamical brain states, thus raising the question about a mechanistic explanation of the dynamics underlying these alterations. Here, we applied a novel perturbational approach based on a whole-brain computational model, which opens up the possibility to externally perturb different brain regions in silico and investigate differences in dynamical stability of different brain states, i.e. the dynamical response of a certain brain region to an external perturbation. After adjusting the whole-brain model parameters to reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded under the influence of LSD or placebo, perturbations of different brain areas were simulated by either promoting or disrupting synchronization in the regarding brain region. After perturbation offset, we quantified the recovery characteristics of the brain area to its basal dynamical state with the Perturbational Integration Latency Index (PILI) and used this measure to distinguish between the two brain states. We found significant changes in dynamical complexity with consistently higher PILI values after LSD intake on a global level, which indicates a shift of the brain’s global working point further away from a stable equilibrium as compared to normal conditions. On a local level, we found that the largest differences were measured within the limbic network, the visual network and the default mode network. Additionally, we found a higher variability of PILI values across different brain regions after LSD intake, indicating higher response diversity under LSD after an external perturbation. Our results provide important new insights into the brain-wide dynamical changes underlying the psychedelic state - here provoked by LSD intake - and underline possible future clinical applications of psychedelic drugs in particular psychiatric disorders.HighlightsNovel offline perturbational method applied on functional magnetic resonance imaging (fMRI) data under the effect of lysergic acid diethylamide (LSD)Shift of brain’s global working point to more complex dynamics after LSD intakeConsistently longer recovery time after model perturbation under LSD influenceStrongest effects in resting state networks relevant for psychedelic experienceHigher response diversity across brain regions under LSD influence after an external in silico perturbation


2018 ◽  
Vol 3 (2) ◽  
pp. 59-64
Author(s):  
Xiping Liu ◽  
Yasutomo Imai ◽  
Yan Zhou ◽  
Sebastian Yu ◽  
Rupeng Li ◽  
...  

Functional connectivity magnetic resonance imaging (fcMRI), a specific form of MRI imaging, quantitatively assesses connectivity between brain regions that share functional properties. Functional connectivity magnetic resonance imaging has already provided unique insights into changes in the brain in patients with conditions such as depression and pain and symptoms that have been reported by patients with psoriasis and are known to impact quality of life. To identify the central neurological impact of psoriasiform inflammation of the skin, we applied fcMRI analysis to mice that had been topically treated with the Toll-like receptor agonist, imiquimod (IMQ) to induce psoriasiform dermatitis. Brain insula regions, due to their suggested role in stress, were chosen as seed regions for fcMRI analysis. Mouse ear and head skin developed psoriasiform epidermal thickening (up to 4-fold, P < .05) and dermal inflammation after 4 days of topical treatment with IMQ. After fcMRI analysis, IMQ-treated mice showed significantly increased insula fc with wide areas throughout the brain, including, but not limited to, the somatosensory cortex, anterior cingulate cortex, and caudate putamen ( P < .005). This reflects a potential central neurological impact of IMQ-induced psoriasis-like skin inflammation. These data indicate that fcMRI may be valuable tool to quantitatively assess the neurological impact of skin inflammation in patients with psoriasis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xia Yang ◽  
Ya-jing Meng ◽  
Yu-jie Tao ◽  
Ren-hao Deng ◽  
Hui-yao Wang ◽  
...  

Background: Alcohol dependence (AD) is a chronic recurrent brain disease that causes a heavy disease burden worldwide, partly due to high relapse rates after detoxification. Verified biomarkers are not available for AD and its relapse, although the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) may play important roles in the mechanism of addiction. This study investigated AD- and relapse-associated functional connectivity (FC) of the NAc and mPFC with other brain regions during early abstinence.Methods: Sixty-eight hospitalized early-abstinence AD male patients and 68 age- and education-matched healthy controls (HCs) underwent resting-functional magnetic resonance imaging (r-fMRI). Using the NAc and mPFC as seeds, we calculated changes in FC between the seeds and other brain regions. Over a follow-up period of 6 months, patients were measured with the Alcohol Use Disorder Identification Test (AUDIT) scale to identify relapse outcomes (AUDIT ≥ 8).Results: Thirty-five (52.24%) of the AD patients relapsed during the follow-up period. AD displayed lower FC of the left fusiform, bilateral temporal superior and right postcentral regions with the NAc and lower FC of the right temporal inferior, bilateral temporal superior, and left cingulate anterior regions with the mPFC compared to controls. Among these FC changes, lower FC between the NAc and left fusiform, lower FC between the mPFC and left cingulate anterior cortex, and smoking status were independently associated with AD. Subjects in relapse exhibited lower FC of the right cingulate anterior cortex with NAc and of the left calcarine sulcus with mPFC compared to non-relapsed subjects; both of these reductions in FC independently predicted relapse. Additionally, FC between the mPFC and right frontal superior gyrus, as well as years of education, independently predicted relapse severity.Conclusion: This study found that values of FC between selected seeds (i.e., the NAc and the mPFC) and some other reward- and/or impulse-control-related brain regions were associated with AD and relapse; these FC values could be potential biomarkers of AD or for prediction of relapse. These findings may help to guide further research on the neurobiology of AD and other addictive disorders.


2021 ◽  
Author(s):  
Derek Martin Smith ◽  
Brian T Kraus ◽  
Ally Dworetsky ◽  
Evan M Gordon ◽  
Caterina Gratton

Connector 'hubs' are brain regions with links to multiple networks. These regions are hypothesized to play a critical role in brain function. While hubs are often identified based on group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-subject variation in the functional connectivity profiles of the brain, especially in association regions where hubs tend to be located. Here we investigated how group hubs are related to locations of inter-individual variability, to better understand if hubs are (a) relatively conserved across people, (b) locations with malleable connectivity, leading individuals to show variable hub profiles, or (c) artifacts arising from cross-person variation. To answer this question, we compared the locations of hubs and regions of strong idiosyncratic functional connectivity ("variants") in both the Midnight Scan Club and Human Connectome Project datasets. Group hubs defined based on the participation coefficient did not overlap strongly with variants. These hubs have relatively strong similarity across participants and consistent cross-network profiles. Consistency across participants was further improved when participation coefficient hubs were allowed to shift slightly in local position. Thus, our results demonstrate that group hubs defined with the participation coefficient are generally consistent across people, suggesting they may represent conserved cross-network bridges. More caution is warranted with alternative hub measures, such as community density, which are based on spatial proximity and show higher correspondence to locations of individual variability.


2009 ◽  
Vol 21 (11) ◽  
pp. 2217-2229 ◽  
Author(s):  
Jessica F. Cantlon ◽  
Melissa E. Libertus ◽  
Philippe Pinel ◽  
Stanislas Dehaene ◽  
Elizabeth M. Brannon ◽  
...  

As literate adults, we appreciate numerical values as abstract entities that can be represented by a numeral, a word, a number of lines on a scorecard, or a sequence of chimes from a clock. This abstract, notation-independent appreciation of numbers develops gradually over the first several years of life. Here, using functional magnetic resonance imaging, we examine the brain mechanisms that 6- and 7-year-old children and adults recruit to solve numerical comparisons across different notation systems. The data reveal that when young children compare numerical values in symbolic and nonsymbolic notations, they invoke the same network of brain regions as adults including occipito-temporal and parietal cortex. However, children also recruit inferior frontal cortex during these numerical tasks to a much greater degree than adults. Our data lend additional support to an emerging consensus from adult neuroimaging, nonhuman primate neurophysiology, and computational modeling studies that a core neural system integrates notation-independent numerical representations throughout development but, early in development, higher-order brain mechanisms mediate this process.


2017 ◽  
Vol 28 (2) ◽  
pp. 602-611 ◽  
Author(s):  
Charlotte Prévost ◽  
Hakwan Lau ◽  
Dean Mobbs

Abstract Surpassing negative evaluation is a recurrent theme of success stories. Yet, there is little evidence supporting the counterintuitive idea that negative evaluation might not only motivate people, but also enhance performance. To address this question, we designed a task that required participants to decide whether taking up a risky challenge after receiving positive or negative evaluations from independent judges. Participants believed that these evaluations were based on their prior performance on a related task. Results showed that negative evaluation caused a facilitation in performance. Concurrent functional magnetic resonance imaging revealed that the motivating effect of negative evaluation was represented in the insula and striatum, while the performance boost was associated with functional positive connectivity between the insula and a set of brain regions involved in goal-directed behavior and the orienting of attention. These findings provide new insight into the neural representation of negative evaluation-induced facilitation.


Sign in / Sign up

Export Citation Format

Share Document