scholarly journals Mechanical and Morphological Properties of Poly-3-hydroxybutyrate/Poly(butyleneadipate-co-terephthalate)/Layered Double Hydroxide Nanocomposites

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yen Leng Pak ◽  
Mansor Bin Ahmad ◽  
Kamyar Shameli ◽  
Wan Md Zin Wan Yunus ◽  
Nor Azowa Ibrahim ◽  
...  

Nanocomposites of poly-3-hydroxybutyrate/poly(butyleneadipate-co-terephthalate)/layered double hydroxide (PHB/PBAT/LDH) were prepared from a binary blend of PHB/PBAT and stearate-Zn3Al LDH via a solution casting method using chloroform as solvent in this study. The pristine Zn3Al LDH was synthesized from nitrate salts solution at pH 7 by using coprecipitation technique and then was modified by stearate anions surfactant via ion exchange reaction. As a result, the basal spacing of the LDH was increased from 8.77 to 24.94 Å after the modification. Intercalated nanocomposites were formed due to the presence of diffraction peak in XRD diffractograms. The infrared spectrum of stearate-Zn3Al LDH exhibited the existence of stearate anions in the synthesized Zn3Al LDH. Mechanical properties with 2 wt% stearate-Zn3Al LDH loading nanocomposites showed 56 wt% improvements in elongation at break compared to those of the blend.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cha Ping Liau ◽  
Mansor Bin Ahmad ◽  
Kamyar Shameli ◽  
Wan Md Zin Wan Yunus ◽  
Nor Azowa Ibrahim ◽  
...  

Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks.


2018 ◽  
Vol 5 (2) ◽  
pp. 296-303
Author(s):  
Josephine Chang Hui Lai ◽  
Nor Liyana Yusof

In this study, the physico-mechanical and morphological properties of polyvinyl alcohol/palm kernel shell/coconut kernel shell elastomeric polymer nanocomposites (PVA/PKS/CKS EPNCs) were investigated. PVA/PKS/CKS EPNCs were prepared via solution casting method and the properties of the elastomeric polymer nanocomposites were characterized through Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), tensile testing and moisture absorption test. Test results showed that increasing the PVA content increased the mechanical properties of elastomeric polymer nanocomposites as well as provided better surface morphology. However, beyond certain percentage of PVA content, the moisture absorption increased too. Therefore, 55wt% of PVA/PKS/CKS EPNCs was chosen as the best elastomeric polymer nanocomposites as it had the best overall properties from the aspect of physico-mechanical, morphological and moisture absorption.


2018 ◽  
Vol 38 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Suvendu Padhi ◽  
P. Ganga Raju Achary ◽  
Nimai C. Nayak

AbstractHalloysite nanotubes (HNTs) were modified by γ-methacryloxypropyltrimethoxysilane (γ-MPS) as it interacts with the aluminol and silanol groups of HNTs present at the edges and surfaces of HNTs. The polymer composites were prepared by means of the solution casting method with ethylene-vinyl acetate (EVA) copolymer having 45% vinyl acetate (VA) content with different weight percent of modified HNTs (m-HNTs). The modification of the HNTs by γ-MPS increases the interfacial and inter-tubular interactions and the degree of dispersion of the HNTs within the EVA matrix which manifest from increase in crosslinking density. The mechanical properties such as tensile strength, tensile modulus and tear strength of nanocomposites were found to increase because of m-HNT. The glass transition temperature (Tg) and the crystalline percentage decreases for EVA/m-HNT nanocomposites were due to the strong interaction between EVA matrix and filler. Also, the EVA/m-HNT nanocomposites exhibited better thermal stability due to the strong inter-tubular interaction.


2015 ◽  
Vol 731 ◽  
pp. 565-568
Author(s):  
Pei Wang ◽  
Zhen Huang ◽  
Wei Zheng ◽  
Ma Dong Si

With soy protein isolate (SPI) as the main raw material, and ethylene glycol (EG) and polyethylene glycol (PEG) as two additives, a number of SPI-based films were prepared through the solution casting method. Results show that the film flexibility is obviously improved after adding EG and the film tensile strength and elongation at break could reach more than 10.5 MPa and 140%, respectively. The antimicrobial results exhibit EG has higher antibacterial effect against both bacteria ofE. coliandS. aureusthan PEG-400.


2016 ◽  
Vol 846 ◽  
pp. 440-447
Author(s):  
Sheikh Ahmad Izaddin Sheikh Mohd Ghazali ◽  
Siti Halimah Sarijo ◽  
Mohd Zobir Hussein

The intercalation of herbicide, 3,4-dicholorophenoxyacetic acid (3,4D), into zinc-aluminium-layered double hydroxide (LDH) for the formation of a new nanocomposite ZADX, was accomplished via anion exchange method. Due to the intercalation of 3,4D with LDH interlayer domain, basal spacing expanded from 8.9Å in the ZAL to 17.7-19.0 Å in the ZADX. The percentage loading of 3,4D in the ZADX is 51.4 % (w/w). The FTIR spectra of the nanocomposite shows resemblance peaks of the 3,4D and Zn-Al-layered double hydroxide indicating the inclusion of 3,4D into the layered double hydroxide. Surface area of the resulting nanocomposite increased from 1.3 to 7.14 m2g-1 with the nitrogen adsorption-desorption of type IV.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012004
Author(s):  
May Teng Hooi ◽  
Siew Wei Phang ◽  
Hui Ying Yow ◽  
Edmund David ◽  
Ning Xin Kim ◽  
...  

Abstract This paper presents the interaction comparison of poly(vinyl) alcohol (PVA) with hydroxyapatite derived from Spanish Mackerel (SM) and Whitefin Wolf Herring (WWH) bones, in different processing method. PVA filament and solution casting method illustrated higher crystallinity in the FTIR graph as compared to the PVA pellet and filament extrusion method. Besides, minimal interactions between PVA with glycerol and HAp was observed as well. PVA pellet and solution casting method portrait higher interaction as compared to the PVA filament and extrusion method. As for the HAp of SM and WWH, WWH had higher crystallinity and better cell adhesion with a higher Ca/P ratio while SM had relatively better mechanical strength with Ca/P ratio near to stoichiometric value. The loading of HAp (0, 2.5, 5, 10, 20, 30%) does not affect interactions of PVA/HAp composite in FTIR, and thermal properties in TGA. However, it caused an increase in crystallinity at low HAp loading and decreased at higher loading of HAp above 10%. Upon addition of HAp, tensile strength increased and elongation at break decreased. As the loading of HAp increased, both mechanical properties decreased. Scaffold with WWH composite possessed lower tensile strength and higher elongation at break than SM composite. The result of mechanical properties corresponded to the SEM result. ANOVA analysis justified the effect of HAp variations and loading on the mechanical properties of the composite was prominent.


2006 ◽  
Vol 12 (4) ◽  
pp. 225-230
Author(s):  
Botomei Anca ◽  
Emil Dumitriu ◽  
Hulea Vasile ◽  
Nastro Alfonso

An organo-mineral nanohybrid material in which the organic moiety is interleaved inside the inorganic lamella was prepared by using phenoxyacetate anions as a guest in the Mg-Al-layered double hydroxide lamella (as an inorganic host) by the self-assembly technique, anion exchange and the reconstruction methods. The powder XRD patterns of the resulted materials show that the basal spacing of the Mg-AI-layered double hydroxide with carbonate as the counter anions expanded from 7.7 ? to around 16.6 ? in the nanohybrid materials. IR studies show that the absorption bands of the resulting materials correspond to the characteristic functional groups of the host and the guest structures. When the two results are taken together, the expansion can be attributed to the intercalation of the phenoxyacetic acid in the inorganic interlamella for the formation of the nanohybrid material. The intercalation of phenoxyacetate anions was also confirmed by thermogravimetric analysis (TG).


Nano Hybrids ◽  
2014 ◽  
Vol 7 ◽  
pp. 53-67 ◽  
Author(s):  
Ahmad Siti Nurasikin ◽  
Hashim Norhayati ◽  
Nur Hidayah Yusri ◽  
Illyas Md Isa ◽  
Azlan Kamari ◽  
...  

A new layered-double hydroxide-3-(4-hydroxyphenyl) propionate (LDH-HPP) has been synthesized by intercalation of 3-(4-hydroxyphenyl) propionic acid (HPP) into Zn-Al-layered double hydroxide (LDH) by ion-exchange method. PXRD, FTIR, TGA/DTG, compositional studies and FESEM were used to characterize the synthesized nanocomposite. The intercalation of HPP into the interlayer gallery space of LDH was characterized by x-ray diffractogram showed expanded basal spacing of the value of 17.1 Å. The FTIR spectra of LDH-HPP nanocomposite synthesis by 0.025M HPP resembled a mixture of both FTIR spectra of HPP and LDH. Thermal analysis of LDH-HPP nanocomposite shows a better thermal stability as compared to the pure HPP, which proved that the intercalation of HPP into LDH interlayer enhanced the thermal stability of the HPP.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. Somashekarappa ◽  
Y. Prakash ◽  
K. Hemalatha ◽  
T. Demappa ◽  
R. Somashekar

The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.


Sign in / Sign up

Export Citation Format

Share Document