scholarly journals Is Weight-Bearing Asymmetry Associated with Postural Instability after Stroke? A Systematic Review

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Jip F. Kamphuis ◽  
Digna de Kam ◽  
Alexander C. H. Geurts ◽  
Vivian Weerdesteyn

Introduction. Improvement of postural stability is an important goal during poststroke rehabilitation. Since weight-bearing asymmetry (WBA) towards the nonparetic leg is common, training of weight-bearing symmetry has been a major focus in post-stroke balance rehabilitation. It is assumed that restoration of a more symmetrical weight distribution is associated with improved postural stability.Objective. To determine to what extent WBA is associated with postural instability in people after stroke.Methods. Electronic databases were searched (Cochrane, MEDLINE, EMBASE, and CINAHL) until March 2012.Main Eligibility Criteria. (1) Participants were people after stroke. (2) The association between WBA and postural stability was reported. Quality of reporting was assessed with the STROBE checklist and a related tool for reporting of confounding.Results. Nine observational studies met all criteria. Greater spontaneous WBA was associated with higher center of pressure (COP) velocity and with poorer synchronization of COP trajectories between the legs (two and one studies, resp.). Evidence for associations between WBA and performance on clinical balance tests or falls was weak.Conclusion. Greater WBA after stroke was associated with increased postural sway, but the current literature does not provide evidence for a causal relationship. Further studies should investigate whether reducing WBA would improve postural stability.

Obesity Facts ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 499-513
Author(s):  
Gabriel M. Pagnotti ◽  
Amna Haider ◽  
Ariel Yang ◽  
Kathryn E. Cottell ◽  
Catherine M. Tuppo ◽  
...  

<b><i>Introduction:</i></b> Globally, 300 million adults have clinical obesity. Heightened adiposity and inadequate musculature secondary to obesity alter bipedal stance and gait, diminish musculoskeletal tissue quality, and compromise neuromuscular feedback; these physiological changes alter stability and increase injury risk from falls. Studies in the field focus on obese patients across a broad range of body mass indices (BMI &#x3e;30 kg/m<sup>2</sup>) but without isolating the most morbidly obese subset (BMI ≥40 kg/m<sup>2</sup>). We investigated the impact of obesity in perturbing postural stability in morbidly obese subjects elected for bariatric intervention, harboring a higher-spectrum BMI. <b><i>Subjects and Methods:</i></b> Traditional force plate measurements and stabilograms are gold standards employed when measuring center of pressure (COP) and postural sway. To quantify the extent of postural instability in subjects with obesity before bariatric surgery, we assessed 17 obese subjects with an average BMI of 40 kg/m<sup>2</sup> in contrast to 13 nonobese subjects with an average BMI of 30 kg/m<sup>2</sup>. COP and postural sway were measured from static and dynamic tasks. Involuntary movements were measured when patients performed static stances, with eyes either opened or closed. Two additional voluntary movements were measured when subjects performed dynamic, upper torso tasks with eyes opened. <b><i>Results:</i></b> Mean body weight was 85% (<i>p</i> &#x3c; 0.001) greater in obese than nonobese subjects. Following static balance assessments, we observed greater sway displacement in the anteroposterior (AP) direction in obese subjects with eyes open (87%, <i>p</i> &#x3c; 0.002) and eyes closed (76%, <i>p</i> = 0.04) versus nonobese subjects. Obese subjects also exhibited a higher COP velocity in static tests when subjects’ eyes were open (47%, <i>p</i> = 0.04). Dynamic tests demonstrated no differences between groups in sway displacement in either direction; however, COP velocity in the mediolateral (ML) direction was reduced (31%, <i>p</i> &#x3c; 0.02) in obese subjects while voluntarily swaying in the AP direction, but increased in the same cohort when swaying in the ML direction (40%, <i>p</i> &#x3c; 0.04). <b><i>Discussion and Conclusion:</i></b> Importantly, these data highlight obesity’s contribution towards increased postural instability. Obese subjects exhibited greater COP displacement at higher AP velocities versus nonobese subjects, suggesting that clinically obese individuals show greater instability than nonobese subjects. Identifying factors contributory to instability could encourage patient-specific physical therapies and presurgical measures to mitigate instability and monitor postsurgical balance improvements.


2003 ◽  
Vol 03 (02) ◽  
pp. 135-144 ◽  
Author(s):  
Janusz W. Blaszczyk ◽  
Bogdan Bacik ◽  
Grzegorz Juras

One of the most important applications of postural sway analysis is the detection of such impairments to the motor system that would allow us to predict risk of falling. Force plate posturography is a commonly used clinical method for the evaluation of postural instability. The diagnostic value of postural sway represented here by oscillations of the center-of-foot pressure (COFP) is being questioned very often. These diagnostic problems result from the lack of an adequate and reliable method of sway analysis — a method that would present a clear connection between stability and quality of postural control. To gain better insight into this problem, the following experiments were done and some effective methods of sway analysis typically applied in conventional mechanics and electrical engineering are presented here. Quality of the postural stability was assessed using, in addition to standard parameters, spatial histograms, body transfer function, contour plots as well as the COFP fractal dimension. Such complex analysis allowed us to extract significant sway parameters that are relevant to postural instability. Analysis of the data revealed that spatial histogram has clear peak which maximum was sensitive to sensory conditions. Changes in the postural sway distributions have been confirmed by the increase of the COFP fractal dimension.


2020 ◽  
Vol 69 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Harish Chander ◽  
Alireza Shojaei ◽  
Shuchisnigdha Deb ◽  
Sachini N. K. Kodithuwakku Arachchige ◽  
Christopher Hudson ◽  
...  

Background Falls due to postural instability are common in construction environments especially from a height. The purpose of the study was to investigate the impact of virtual reality (VR)-generated environments at different virtual heights on postural stability. Methods Nineteen adults were analyzed for postural stability, tested in real (No VR) environment and in three VR environments, randomly assigned, at virtual heights of 0 ft. (VR0), 40 ft. (VR40), and 120 ft. (VR120). Postural stability was quantified using center of pressure postural sway variables and analyzed using a repeated measures analysis of variance (ANOVA). Participants also completed a simulation sickness questionnaire (SSQ) before and after VR exposure and a presence questionnaire (PQ) after VR exposure. Findings Significant postural instability ( p < .05) was identified between VR and No VR, in which increased postural instability was evident in all VR conditions compared with No VR. Scores from SSQ were within a pre–post score difference of five and the PQ score was (104.21 ± 14.03). Conclusion/Application to Practice Findings suggest that VR environments, regardless of virtual height, induced increased postural instability, which can be attributed to visual sensory conflicts to the postural control system created by VR exposure. Participants’ subjective responses on SSQ and PQ confirmed the feasibility of using VR to represent realistic immersions in virtual heights. However, objectively, VR could potentially lead to postural instability, stressing caution. VR can be a potential tool for providing virtual high-altitude environment exposure for fall prevention training, however, more research is needed on postural adaptation with acute and chronic exposure to VR.


2020 ◽  
Vol 29 (2) ◽  
pp. 174-178
Author(s):  
Kelly M. Meiners ◽  
Janice K. Loudon

Purpose/Background: Various methods are available for assessment of static and dynamic postural stability. The primary purpose of this study was to investigate the relationship between dynamic postural stability as measured by the Star Excursion Balance Test (SEBT) and static postural sway assessment as measured by the TechnoBody™ Pro-Kin in female soccer players. A secondary purpose was to determine side-to-side symmetry in this cohort. Methods: A total of 18 female soccer players completed testing on the SEBT and Technobody™ Pro-Kin balance device. Outcome measures were anterior, posterior medial, and posterior lateral reaches from the SEBT and center of pressure in the x- and y-axes as well as SD of movement in the forward/backward and medial/lateral directions from the force plate on left and right legs. Bivariate correlations were determined between the 8 measures. In addition, paired Wilcoxon signed-rank tests were performed to determine similarity between limb scores. Results: All measures on both the SEBT and postural sway assessment were significantly correlated when comparing dominant with nondominant lower-extremities with the exception of SD of movement in both x- and y-axes. When correlating results of the SEBT with postural sway assessment, a significant correlation was found between the SEBT right lower-extremity posterior lateral reach (r = .567, P < .05) and summed SEBT (r = .486, P < .05) and the center of pressure in the y-axis. A significant correlation was also found on the left lower-extremity, with SD of forward/backward movement and SEBT posterior medial reach (r = −.511, P < .05). Conclusions: Dynamic postural tests and static postural tests provide different information to the overall assessment of balance in female soccer players. Relationship between variables differed based on the subject’s lower-extremity dominance.


2021 ◽  
Vol 22 (2) ◽  
pp. 141-143
Author(s):  
Yu. I. Doyan ◽  
◽  
O. A. Kicherova ◽  
L. I. Reikhert ◽  
L. V. Graf ◽  
...  

The problem of discirculatory encephalopathy (DEP) is still relevant in modern medicine due to the high prevalence of this pathology. The symptoms of gait disturbance and postural instability, which are an additional factor of disability and a decrease in the quality of life in patients with DEP, are discussed in this article. Modern concepts of the pathogenesis and clinical picture of static-dynamic disorders are highlighted.


Author(s):  
Bożena Wojciechowska-Maszkowska ◽  
Dorota Borzucka

The aim of this study was to evaluate the effect of additional load on postural-stability control in young women. To evaluate postural control in the 34 women in this study (mean age, 20.8 years), we measured postural sway (center of pressure, COP) in a neutral stance (with eyes open) in three trials of 30 s each. Three load conditions were used in the study: 0, 14, and 30 kg. In analysis, we used three COP parameters, variability (linear), mean sway velocity (linear), and entropy (nonlinear). Results suggested that a considerable load on a young woman’s body (approximately 48% of body weight) had significant influence on stability. Specifically, heavy loads triggered random movements, increased the dynamics of postural-stability control, and required more attention to control standing posture. The results of our study indicate that inferior postural control mainly results from insufficient experience in lifting such a load.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 601
Author(s):  
Daniele Bibbo ◽  
Silvia Conforto ◽  
Maurizio Schmid ◽  
Federica Battisti

In this paper, we introduced and tested a new system based on a sensorized seat, to evaluate the sitting dynamics and sway alterations caused by different cognitive engagement conditions. An office chair was equipped with load cells, and a digital and software interface was developed to extract the Center of Pressure (COP). A population of volunteers was recruited to evaluate alterations to their seated posture when undergoing a test specifically designed to increase the cognitive engagement and the level of stress. Relevant parameters of postural sway were extracted from the COP data, and significant alterations were found in all of them, highlighting the ability of the system to capture the emergence of a different dynamic behavior in postural control when increasing the complexity of the cognitive engagement. The presented system can thus be used as a valid and reliable instrument to monitor the postural patterns of subjects involved in tasks performed in a seated posture, and this may prove useful for a variety of applications, including those associated with improving the quality of working conditions.


2013 ◽  
Vol 18 (5) ◽  
pp. 38-40 ◽  
Author(s):  
Hamid Bateni ◽  
Gina Leno ◽  
Rebeca Manjarres ◽  
Bailey Ouellette ◽  
Mark Wolber

Context:Previous research has demonstrated that localized leg muscle fatigue induced by lower extremity exercises (e.g., squat jumps, sprints, and treadmill running) has an adverse effect on postural stability.Objective:To assess the effect of cardiovascular fatigue induced by upper extremity exercise on postural stability.Design:Repeated measures.Participants:Fourteen healthy young adults between the ages of 22 and 30 years (7 male and 7 female).Intervention:Participants performed an exercise protocol on an upper-body ergometer to induce cardiovascular fatigue.Main Outcome Measures:Postural sway, represented by center of pressure excursion, during bilateral standing in two different foot positions.Results:In a tandem standing position, mediolateral mean distance, root mean square distance, resultant power, and centroidal frequency increased signifcantly after inducement of cardiovascular fatigue.Conclusion:Cardiovascular fatigue adversely affects postural stability.


2021 ◽  
Vol 17 (6) ◽  
pp. 418-427
Author(s):  
Yücel Makaracı ◽  
Recep Soslu ◽  
Ömer Özer ◽  
Abdullah Uysal

In sports such as basketball and volleyball, loss of balance due to the inability to maintain body stability and lack of postural control adversely affect athletic performance. Deaf athletes appear to struggle with balance and postural stability problems. The purpose of this study was to examine postural sway values in parallel and single leg stance of Olympic deaf basketball and volleyball players and reveal differences between the branches. Twenty-three male athletes from the Turkish national deaf basketball (n= 11) and volleyball (n= 12) teams participated in the study. After anthropometric measurements, the subjects completed postural sway (PS) tests in parallel/single leg stances with open eyes and closed eyes on a force plate. PS parameters (sway path, velocity, and area) obtained from the device software were used for the statistical analysis. The Mann-Whitney U-test was used to compare differences in PS parameters between basketball and volleyball players, and the alpha value was accepted as 0.05. Volleyball players had significantly better results in parallel stance and dominant leg PS values than basketball players (P<0.05). There was no significant difference between the groups in nondominant leg PS values (P>0.05). We think that proprioceptive and vestibular system enhancing training practices to be performed with stability exercises will be beneficial in terms of both promoting functional stability and interlimb coordination. Trainers and strength coaches should be aware of differences in the postural control mechanism of deaf athletes.


2019 ◽  
Vol 9 (11) ◽  
pp. 113 ◽  
Author(s):  
Harish Chander ◽  
Sachini N. K. Kodithuwakku Arachchige ◽  
Christopher M. Hill ◽  
Alana J. Turner ◽  
Shuchisnigdha Deb ◽  
...  

Background: Virtual reality (VR) is becoming a widespread tool in rehabilitation, especially for postural stability. However, the impact of using VR in a “moving wall paradigm” (visual perturbation), specifically without and with anticipation of the perturbation, is unknown. Methods: Nineteen healthy subjects performed three trials of static balance testing on a force plate under three different conditions: baseline (no perturbation), unexpected VR perturbation, and expected VR perturbation. The statistical analysis consisted of a 1 × 3 repeated-measures ANOVA to test for differences in the center of pressure (COP) displacement, 95% ellipsoid area, and COP sway velocity. Results: The expected perturbation rendered significantly lower (p < 0.05) COP displacements and 95% ellipsoid area compared to the unexpected condition. A significantly higher (p < 0.05) sway velocity was also observed in the expected condition compared to the unexpected condition. Conclusions: Postural stability was lowered during unexpected visual perturbations compared to both during baseline and during expected visual perturbations, suggesting that conflicting visual feedback induced postural instability due to compensatory postural responses. However, during expected visual perturbations, significantly lowered postural sway displacement and area were achieved by increasing the sway velocity, suggesting the occurrence of postural behavior due to anticipatory postural responses. Finally, the study also concluded that VR could be used to induce different postural responses by providing visual perturbations to the postural control system, which can subsequently be used as an effective and low-cost tool for postural stability training and rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document