scholarly journals A Reduced Drosophila Model Whose Characteristic Behavior Scales Up

2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Andrew David Irving

Computational biology seeks to integrate experimental data with predictive mathematical models—testing hypotheses which result from the former through simulations of the latter. Such models should ideally be approachable and accessible to the widest possible community, motivating independent studies. One of the most commonly modeled biological systems involves a gene family critical to segmentation in Drosophila embryogenesis—the segment polarity network (SPN). In this paper, we reduce a celebrated mathematical model of the SPN to improve its accessibility; unlike its predecessor our reduction can be tested swiftly on a widely used platform. By reducing the original model we identify components which are unnecessary; that is, we begin to detect the core of the SPN—those mechanisms that are essentially responsible for its characteristic behavior. Hence characteristic behavior can scale up; we find that any solution of our model (defined as a set of conditions for which characteristic behavior is seen) can be converted into a solution of the original model. The original model is thus made more accessible for independent study through a more approachable reduction which maintains the robustness of its predecessor.

1967 ◽  
Vol 7 (03) ◽  
pp. 252-258 ◽  
Author(s):  
D.L. Lord ◽  
B.W. Hulsey ◽  
L.L. Melton

Abstract A mathematical model d1.20?p/4L = A(8v)s derived from the Blasius equation is proposed to be applicable to turbulent flow through straight cylindrical pipe for time-independent fluids which produce a diameter family of straight parallel lines on a log (d?p/4L) vs log (8v/d) plot or stress-flow diagram. Such a correlation should permit scale-up with data taken from one pipe diameter for Newtonian, inelastic non-Newtonian and viscoelastic fluids, such as dilute polymer fracturing fluids, which produce considerable frictional pressure reductions. The Newtonian diameter exponent value 1. 20 is shown to be empirically valid for turbulent non-Newtonian flow by application of numerical analysis methods. Multiple regression analysis is applied to a logarithmic linearization of the proposed model. An improved data fit results from further linearization achieved by taking linear terms from a generalized Taylor's series expansion about the multiple regression coefficients. Extensive experimental data obtained in five pipe diameters with water, sodium carboxymethylcellulose solutions, guar gum solutions, bentonite clay suspensions and calcium carbonate slurries are presented. Except for calcium carbonate slurries, which were investigated rather than time-dependent cement slurries, the fluids studied contain drilling or fracturing fluid additives. The behavior exhibited by these fluids is considered typical of most fluids encountered in drilling, cementing and fracturing operations. INTRODUCTION Considerable difficulties have been encountered in predicting turbulent flow pressure drops produced by non-Newtonian fluids flowing through straight cylindrical pipe. Correlations previously presented require extensive experimental data which represent several pipe diameters and a wide flow rate range to estimate the necessary scale-up parameters.1-7 One must implement either elaborate experimental apparatus or spend considerable time and effort to gather the se data. Presented here is a correlation method which should minimize the experimental effort and data analysis normally required by utilizing flow data taken with only one pipe diameter. Turbulent flow data (up-stream and dawn-stream pressure and volumetric flow rates) were collected for five pipe diameters through operation of a small pipeline system having an electronic data acquisition and digitizing system. A mathematical model derived from the Blasius equation was utilized to describe the functional relationship between pressure drop and the two independent variables, diameter and average flow velocity. A correlation, which should produce a valid single-pipe scale-up, resulted from a computer-implemented statistical and numerical data analysis for several time-independent non-Newtonian fluids.


2018 ◽  
Vol 15 (1) ◽  
pp. 169-181
Author(s):  
M. I. Sidorov ◽  
М. Е. Stavrovsky ◽  
V. V. Irogov ◽  
E. S. Yurtsev

Using the example of van der Pol developed a mathematical model of frictional self-oscillations in topochemically kinetics. Marked qualitative correspondence of the results of calculation performed using the experimental data of researchers.


Author(s):  
Esa M. Rantanen ◽  
Hamza Khammash ◽  
James C. Hall

Education and career development of new generations of human factors professionals has rightly been a central concern the Human Factors and Ergonomics Society for many decades. There have been periodic surveys to track the changing employer expectations for new professionals, and there have been several panel discussion at the HFES Annual Meetings to address various issues in education of future professionals. There have been significant changes in academia, where many traditional disciplinary programs are declining and new interdisciplinary programs are emerging. These trends may present novel opportunities for education of the future human factors workforce. In this project we surveyed all courses in a university course catalog to identify courses that offer training, to varying degrees, in the Core Competencies as defined by the Board of Certification in Professional Ergonomics. These courses could form a basis for interdisciplinary programs in human factors without being confined in any particular department or existing program.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1592
Author(s):  
Dominik Gryboś ◽  
Jacek S. Leszczyński ◽  
Dorota Czopek ◽  
Jerzy Wiciak

In this paper, we demonstrate how to reduce the noise level of expanded air from pneumatic tools. Instead of a muffler, we propose the expanded collecting system, where the air expands through the pneumatic tube and expansion collector. We have elaborated a mathematical model which illustrates the dynamics of the air flow, as well as the acoustic pressure at the end of the tube. The computational results were compared with experimental data to check the air dynamics and sound pressure. Moreover, the study presents the methodology of noise measurement generated in a pneumatic screwdriver in a quiet back room and on a window-fitting stand in a production hall. In addition, we have performed noise measurements for the pneumatic screwdriver and the pneumatic screwdriver on an industrial scale. These measurements prove the noise reduction of the pneumatic tools when the expanded collecting system is used. When the expanded collecting system was applied to the screwdriver, the measured Sound Pressure Level (SPL) decreased from 87 to 80 dB(A).


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mykhaylo Tkach ◽  
Serhii Morhun ◽  
Yuri Zolotoy ◽  
Irina Zhuk

AbstractNatural frequencies and vibration modes of axial compressor blades are investigated. A refined mathematical model based on the usage of an eight-nodal curvilinear isoparametric finite element was applied. The verification of the model is carried out by finding the frequencies and vibration modes of a smooth cylindrical shell and comparing them with experimental data. A high-precision experimental setup based on an advanced method of time-dependent electronic interferometry was developed for this aim. Thus, the objective of the study is to verify the adequacy of the refined mathematical model by means of the advanced time-dependent electronic interferometry experimental method. The divergence of the results of frequency measurements between numerical calculations and experimental data does not exceed 5 % that indicates the adequacy and high reliability of the developed mathematical model. The developed mathematical model and experimental setup can be used later in the study of blades with more complex geometric and strength characteristics or in cases when the real boundary conditions or mechanical characteristics of material are uncertain.


2019 ◽  
Vol 106 (5-6) ◽  
pp. 2227-2241 ◽  
Author(s):  
Patrik Fager ◽  
Martina Calzavara ◽  
Fabio Sgarbossa

AbstractKitting – meaning to supply assembly with components in presorted kits – is widely seen as beneficial for assembly quality and efficiency when there is a multitude of component variants. However, the process by which kits are prepared – the kit preparation – is labour-intensive, and kit errors are problematic at assembly processes. The use of robotics to support kit preparation has received some attention by researchers, but literature is lacking with respect to how collaborative robots – cobots – can support kit preparation activities. The purpose of this paper is to identify the potential of a cobot to support time-efficient batch preparation of kits. To address the purpose, the paper presents a mathematical model for estimation of the cycle time associated with cobot-supported kit preparation. The model is applied in a numerical example with experimental data from laboratory experiments, and cobot-supported kit preparation is compared with manual kit preparation. The findings suggest that cobot-supported kit preparation is beneficial with diverse kits and smaller components quantities per SKU (Stock Keeping Unit) and provides less variability of the outcome, when compared to manual kit preparation. The paper reveals several insights about cobot-supported kit preparation that can be valuable for both academics and practitioners. The model developed can be used by practitioners to assess the potential of cobots to support kit-batch preparation in association with assembly, spare parts, repair and maintenance, or business to business industry.


2007 ◽  
Vol 23 ◽  
pp. 119-122
Author(s):  
Cristina Teișanu ◽  
Stefan Gheorghe ◽  
Ion Ciupitu

The most important features of the self-lubricating bearings are the antifriction properties such as friction coefficient and wear resistence and some mechanical properties such as hardness, tensile strength and radial crushing strength. In order to improve these properties new antifriction materials based on iron-copper powders with several additional components (tin, lead and molybdenum disulphide) have been developed by PM techniques. To find the optimal relationship between chemical compositions, antifriction and mechanical properties, in this paper a mathematical model of the sintering process is developed, which highlighted the accordance of the model with data by regression analysis. For the statistical processing of the experimental data the VH5 hardness values of the studied materials were considered. The development of mathematical model includes the enunciation of the model, the establishment of the performance function (optimization) and the establishment of the model equations and verifying. The accordance of the model with experimental data has been highlighted by regression analysis


1965 ◽  
Vol 43 (5) ◽  
pp. 1569-1576 ◽  
Author(s):  
N. Solony ◽  
F. W. Birss ◽  
John B. Greenshields

The semiempirical SCF–LCAO–MO method of Pariser–Parr–Pople is utilized in the study of the π-electronic structures of thiophene, furan, and pyrrole. The core Hamiltonian expansion contains a Uz++ term, the potential due to the ionized hetero-atom contributing two electrons to the π-system. The γzz, one-center coulomb repulsion integral for the hetero-atom is evaluated from the experimental spectroscopic data only. With the resonance integral βczc as the only variable parameter, the calculated π*–π electronic transitions are in a satisfactory agreement with the experimental data.


1998 ◽  
Vol 120 (4) ◽  
pp. 1064-1071 ◽  
Author(s):  
J. M. Ha ◽  
G. P. Peterson

The original analytical model for predicting the maximum heat transport capacity in micro heat pipes, as developed by Cotter, has been re-evaluated in light of the currently available experimental data. As is the case for most models, the original model assumed a fixed evaporator region and while it yields trends that are consistent with the experimental results, it significantly overpredicts the maximum heat transport capacity. In an effort to provide a more accurate predictive tool, a semi-empirical correlation has been developed. This modified model incorporates the effects of the temporal intrusion of the evaporating region into the adiabatic section of the heat pipe, which occurs as the heat pipe approaches dryout conditions. In so doing, the current model provides a more realistic picture of the actual physical situation. In addition to incorporating these effects, Cotter’s original expression for the liquid flow shape factor has been modified. These modifications are then incorporated into the original model and the results compared with the available experimental data. The results of this comparison indicate that the new semiempirical model significantly improves the correlation between the experimental and predicted results and more accurately represents the actual physical behavior of these devices.


Sign in / Sign up

Export Citation Format

Share Document