scholarly journals Evaluation of Flow-Induced Dynamic Stress and Vibration of Volute Casing for a Large-Scale Double-Suction Centrifugal Pump

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Jun Wang ◽  
Li-Xia Qu ◽  
Ling-Yan He ◽  
Jiang-Yong Gao

The transient analysis was carried out to investigate the dynamic stress and vibration of volute casing for a large double-suction centrifugal pump by using the transient fluid-structure interaction theory. The flow pulsations at flow rate ranging from 60% to 100% of the nominal flow rate (Qd) were taken as the boundary conditions for FEM analysis of the pump volute casing structure. The results revealed that, for all operating conditions, the maximum stress located at the volute tongue region, whereas the maximum vibration displacement happened close to the shaft hole region. It was also found that the blade passing frequency and its harmonics were dominant in the variations of dynamic stress and vibration displacement. The amplitude of the dominant frequency for the maximum stress detected at 0.6Qdwas 1.14 times that atQd, lower than the related difference observed for pressure fluctuations (3.23 times). This study provides an effective method to quantify the flow-induced structural dynamic characteristics for a large-scale double-suction pump. It can be used to direct the hydraulic and structural design and stable operation, as well as fatigue life prediction for large-scale pumps.

Author(s):  
Shunya Takao ◽  
Kentarou Hayashi ◽  
Masahiro Miyabe

Abstract In order to improve suction performance, centrifugal pumps with an inducer are used for rocket pumps, liquid gas transport such as LNG, and general-purpose pumps. Since a higher suction performance than conventional pump is required, a splitter blade that consists of a long blade and a short blade is sometimes adopted. However, the design becomes more difficult due to the increased number of parameters. The stable operation over a wide flow rate range are required in the general-purpose pumps. Therefore it is necessary to design them so that unstable flow phenomena such as surges do not occur. However, the design method to avoid them is not well understood yet. In this study, we focused on the splitter blade impeller in a general-purpose low-speed centrifugal pump with an inducer. Six parameters such as leading edge position and trailing edge position of the short blade for both hub-side and tip-side were set as design ones. A multi-objective optimization method using a commercial software was applied to improve suction performance while maintaining high efficiency. Then obtained optimal shape were analyzed by CFD calculation and extracted the feature. Furthermore, optimized impellers were manufactured and confirmed the performance over a wide flow rate range by experiments. In addition, a optimizing design method that improves pump performance at lower cost was studied.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Bo Gao ◽  
Pengming Guo ◽  
Ning Zhang ◽  
Zhong Li ◽  
MinGuan Yang

Intense pressure pulsation, resulted from the flow structure shedding from the blade trailing edge and its interaction with the volute tongue and the casing, is detrimental to the stable operation of centrifugal pumps. In the present study, unsteady pressure pulsation signals at different positions of the volute casing are extracted using high response pressure transducers at flow rate of 0–1.55ΦN. Emphasis is laid upon the influence of measuring position and operating condition on pressure pulsation characteristics, and components at the blade passing frequency fBPF and root-mean-square (RMS) values in 0–20.66fn frequency band are mainly analyzed. Results clearly show that the predominant components in pressure spectra always locate at fBPF. The varying trends versus flow rate of components at fBPF differ significantly for different points, and it is considered to be associated with the corresponding flow structures at particular positions of the volute casing. At the near-tongue region, high pressure amplitudes occur at the position of θ = 36 deg, namely the point at the after tongue region. For different measuring points, angular distributions of amplitudes at fBPF and RMS values in 0–20.66fn frequency band are not consistent and affected significantly by the pump operating conditions.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
S. Duplaa ◽  
O. Coutier-Delgosha ◽  
A. Dazin ◽  
O. Roussette ◽  
G. Bois ◽  
...  

The startup of rocket engine turbopumps is generally performed only in a few seconds. It implies that these pumps reach their nominal operating conditions after only a few rotations. During these first rotations of the blades, the flow evolution in the pump is governed by transient phenomena, based mainly on the flow rate and rotation speed evolution. These phenomena progressively become negligible when the steady behavior is reached. The pump transient behavior induces significant pressure fluctuations, which may result in partial flow vaporization, i.e., cavitation. An existing experimental test rig has been updated in the LML Laboratory (Lille, France) for the startups of a centrifugal pump. The study focuses on the cavitation induced during the pump startup. Instantaneous measurement of torque, flow rate, inlet and outlet unsteady pressures, and pump rotation velocity enable to characterize the pump behavior during rapid starting periods. Three different types of fast startup behaviors have been identified. According to the final operating point, the startup is characterized either by a single drop of the delivery static pressure, by several low-frequency drops, or by a water hammer phenomenon that can be observed in both the inlet and outlet of the pump. A physical analysis is proposed to explain these three different types of transient flow behavior.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1655-1659

The objective of the project is to reduce the vibration and fatigue in rotor of the centrifugal pump based on fluid structure interactions, when it rotates by the momentum of water current at different flow rate and to arrive at optimum operating conditions and perform structural analysis to determine deflection and frequency by using ANSYS 16.2.dynamic stresses are predicted at various nodal position, this would lead to suggest the method to reduce the frequency due to vibration.Computational fluid dynamics (CFD) study using Ansys 16.2 has been carried out to accomplish the objective of the work.


Author(s):  
Yu-Liang Zhang ◽  
Zu-Chao Zhu ◽  
Hua-Shu Dou ◽  
Bao-Ling Cui ◽  
Yi Li ◽  
...  

AbstractTransient performance of pumps during transient operating periods, such as startup and stopping, has drawn more and more attentions recently due to the growing engineering needs. During the startup period of a pump, the performance parameters such as the flow rate and head would vary significantly in a broad range. Therefore, it is very difficult to accurately specify the unsteady boundary conditions for a pump alone to solve the transient flow in the absence of experimental results. The closed-loop pipe system including a centrifugal pump is built to accomplish the self-coupling calculation. The three-dimensional unsteady incompressible viscous flow inside the passage of the pump during startup period is numerically simulated using the dynamic mesh method. Simulation results show that there are tiny fluctuations in the flow rate even under stable operating conditions and this can be attributed to influence of the rotor–stator interaction. At the very beginning of the startup, the rising speed of the flow rate is lower than that of the rotational speed. It is also found that it is not suitable to predict the transient performance of pumps using the calculation method of quasi-steady flow, especially at the earlier period of the startup.


2017 ◽  
Vol 69 (4) ◽  
pp. 605-611
Author(s):  
Xizhi Ma ◽  
Miaomiao Li

Purpose Large scale is a trend of the ball mill, so the loads on their bearings become very large, bearing operating conditions turn into more severe. The moment of inertia to their pivot of the pad increase significantly, so it leads to the difficult of the pad attitude adjustment and makes the pad tilting angles time response slow, the key factor to effects attitude adjustment is the oil film moment to the pad pivot at unbalance position. the oil film moment and its effect factors must be studied in the design of the bearing used in ball mill. Design/methodology/approach Models about the lubrication of multi-pocket pivoted pad hydrostatic bearing is established, the complicated relationship of the oil flow rate between the oil pockets are taken into account. Finite differential method is used to solv the model, and theroy of finite element method is use to calculate the oil flow rate out of the pocket edges. Newton’s methods are used to determine the pressure of pockets.The pad tilting moment to its pivot is numerically analyzed. Findings The tilting moment to its pivot is set as an indicator of the ability for a pad to adjust its attitude. The effects of the diameter of throttling capillary and the pocket area on the attitude adjusting capacity is studied. Relations between the attitude adjustment capacity for a pad and there effects factors are presented. Practical implications The methods and results have the special reference to the design and operation of multiple pockets tilted pad hydrostatic journal bearing. Originality/value Methods to studied the pad attitude adjustment are given in the article for the multi-pocket pivot pad hydrostatic beairng.The influence factors on pad attitude adjusting capacity are discussed for a this specail kind hydrostatic bearing, the how the factors influence the pad tilting angle adjustment are presented.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Ning Zhang ◽  
MinGuan Yang ◽  
Bo Gao ◽  
Zhong Li ◽  
Dan Ni

Rotor–stator interaction, a major source of high amplitude pressure pulsation and flow-induced vibration in the centrifugal pump, is detrimental to stable operation of pumps. In the present study, a slope volute is investigated to explore an effective method to reduce high pressure pulsation level, and its influence on flow structures is analyzed using numerical simulation. The stress is placed on experimental investigation of unsteady pressure pulsation inside the slope volute pump. For that purpose, pressure pulsations are extracted at nine locations along the slope volute casing covering sensitive pump regions. Results show that distinct pressure pulsation peaks at fBPF, together with nonlinear components are captured. These peaks are closely related to the position of pressure transducer and operating conditions of the pump. The improvement of rotational speed of the impeller results in rapid increase of pressure fluctuation amplitude at fBPF and corresponding root mean square (RMS) value within 10–500 Hz. A comparison with conventional spiral volute pump is implemented as well, and it is demonstrated that slope volute contributes significantly to the decline of pressure pulsation level.


Author(s):  
Romain Prunières ◽  
Chisachi Kato

Abstract Centrifugal pump performance curves instability, characterized by a local dent, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions, causing severe problems such as increased pressure pulsation, noise and vibration which can damage both pump and system. For the pump to have reliable operation, it is necessary to understand the onset and the mechanism of the phenomenon resulting in performance curves instability. Present paper focuses on performance curves instability of a centrifugal pump of low specific speed (ωs = 0.65, Ns = 1776) and aims at a better understanding of the mechanism leading to the head drop observed during tests at part load. For that purpose, Computation Fluid Dynamic (CFD) was performed using a Large-Eddy Simulation (LES) approach. The geometry used for present research is in fact the first stage of a multi-stage centrifugal pump and is composed of a suction chamber, a closed-type impeller, a vaned diffuser and return guide vanes to next stage (not included). Leakages at wear ring and stage bush were also included in the computed geometry in order to consider their potential influence on pump stability. The occurrence of the instability in CFD is found at a higher flow rate than in the experiments. It is observed that the pre-swirl angle is under-predicted by several degrees which leads to change the impeller operating conditions. Nevertheless, the analysis of the CFD results is still useful to have a better understanding of the onset of the head drop. When the head drops, a switching of low radial and axial velocities at the impeller outlet from the hub side to the shroud side is observed. This change of flow pattern goes along with a strong increase of the diffuser inlet throat recirculation and the development of stall, that impairs pressure recovery between the impeller outlet and the diffuser inlet. As the pump flow rate is further decreased below the head drop flow rate, recirculation at the diffuser throat extend toward the impeller outlet and impact Euler head. Conversely, the pressure recovery from the impeller outlet to the diffuser inlet throat increases again as the flow velocity slowdown can be effective again. Consequently, the pump head increases again.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1714
Author(s):  
Jian Xu ◽  
Longyan Wang ◽  
Stephen Ntiri Asomani ◽  
Wei Luo ◽  
Rong Lu

Rotor-stator interaction (RSI) in the centrifugal pump-as-turbine (PAT) is a significant source of high amplitude of the pressure pulsation and the flow-induced vibration, which is detrimental to the stable operation of PAT. It is therefore imperative to analyze the rotor-stator interaction, which can subsequently be used as a guideline for reducing the output of PAT noise, vibration and cavitation. In addition, it is important for a PAT to have a wide operating range preferably at maximum efficiency. In order to broaden the operating range, this work proposes a multi-condition optimization scheme based on numerical simulations to improve the performance of a centrifugal PAT. In this paper, the optimization of PAT impeller design variables (b2, β1, β2 and z) was investigated to shed light upon its influence on the output efficiency and its internal flow characteristics. Thus, the aim of the study is to examine the unsteady pressure pulsation distributions within the PAT flow zones as a result of the impeller geometric optimization. The numerical results of the baseline model are validated by the experimental test for numerical accuracy of the PAT. The optimized efficiencies based on three operating conditions (1.0Qd, 1.2Qd, and 1.4Qd) were maximally increased by 13.1%, 8.67% and 10.62%, respectively. The numerical results show that for the distribution of PAT pressure pulsations, the RSI is the main controlling factor where the dominant frequencies were the blade passing frequency (BPF) and its harmonics. In addition, among the three selected optimum cases, the optimized case C model exhibited the highest level of pressure pulsation amplitudes, while optimized case B reported the lowest level of pressure pulsation.


Author(s):  
Zhifeng Yao ◽  
Fujun Wang ◽  
Zichao Zhang ◽  
Ruofu Xiao ◽  
Chenglian He

The pump operation stability is one of the most important indicators for large discharge pumping stations. Impeller seal rings wear is a key problematic issue. A large double suction centrifugal pump in a real water supply pumping station is numerically and experimentally investigated, of which the seal rings are seriously wore on a fixed location. The pump shaft throws in two orthorhombic directions are measured at flow rates ranging from 0 to 110% of nominal flow rate, as well as the startup and shut down periods. And careful analysis of radial forces under various steady and unsteady conditions is carried out combining with the experimental results. The results show that the value of the shaft displacement obviously increases as the flow rate decreases, especially on the operating conditions with the flow rates below 87% of the design flow rate for the drive end side. The absolute value of the shaft displacement is 0.37mm, which is more than 3 times as large as that at nominal operating condition. There exit a lasting time of large shaft displacements during pump startup and shutdown periods, and the largest value of shaft displacement at the drive end side happens during the pump startup process, which can be increase to 0.95mm. There exists relative large radial force, and the direction of which is exactly the same with the pump shaft displacement at the flow rate from 0.73Qn to 0.32Qn, and also meet the wear locations of the impeller seal rings.


Sign in / Sign up

Export Citation Format

Share Document