scholarly journals Improving the Electrical Parameters of a Photovoltaic Panel by Means of an Induced or Forced Air Stream

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
R. Mazón-Hernández ◽  
J. R. García-Cascales ◽  
F. Vera-García ◽  
A. S. Káiser ◽  
B. Zamora

The main priority in photovoltaic (PV) panels is the production of electricity. The transformation of solar energy into electricity depends on the operating temperature in such a way that the performance increases with the decreasing temperatures. In the existing literature, different cooling techniques can be found. The purpose of most of them is to use air or water as thermal energy carriers. This work is focused on the use of air as a working fluid whose movement is either induced by natural convection or forced by means of a fan. The aim of this study is to characterise the electrical behaviour of the solar panels in order to improve the design of photovoltaic installations placed in roof applications ensuring low operating temperatures which will correct and reverse the effects produced on efficiency by high temperature. To do this, a test installation has been constructed at the Universidad Politécnica de Cartagena in Spain. In this paper, the results of the tests carried out on two identical solar panels are included. One of them has been modified and mounted on different channels through which air flows. The different studies conducted show the effects of the air channel cross-section, the air velocity, and the panel temperature on the electrical parameters of the solar panels, such as the voltage, current, power, and performance. The results conclude that the air space between the photovoltaic panels and a steel roof must be high enough to allow the panel to be cooled and consequently to achieve higher efficiency.

2018 ◽  
Vol 45 ◽  
pp. 00012
Author(s):  
Anna Bryszewska-Mazurek ◽  
Wojciech Mazurek

An air-to-air heat pipe heat exchanger has been designed, constructed and tested. Gravity-assisted wickless heat pipes (thermosiphons) were used to transfer heat from one air stream to another air stream, with a low temperature difference. A thermosiphon heat exchanger has its evaporation zone below the condensation zone. Heat pipes allow keeping a more uniform temperature in the heat transfer area. The heat exchanger consists of 20 copper tubes with circular copper fins on their outer surface. The tubes were arranged in a row and the air passed across the pipes. R245fa was used as a working fluid in the thermosiphons. Each heat pipe had a 40 cm evaporation section, a 20 cm adiabatic section and a 40 cm condensation section. The thermosiphon heat exchanger has been tested in different conditions of air stream parameters (flows, temperatures and humidity). The air face velocity ranged from 1,0 m/s to 4,0 m/s. The maximum thermal efficiency of the thermosiphon heat exchanger was between 26÷40%, depending on the air velocity. The freezing of moisture from indoor air was observed when the cold air temperature was below - 13°C.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Noe Samano ◽  
José Alfredo Padilla-Medina ◽  
Nimrod Vázquez

Solar panels have become attractive in order to generate and supply electricity in commercial and residential applications. Their increased module efficiencies have caused not only a massive production but also a sensible drop on sale prices. Methods of characterization, instrumentation for in situ measurements, defect monitoring, process control, and performance are required. A temperature characterization method by means of thermograph analysis is exposed in this paper. The method was applied to multicrystalline modules, and the characterization was made with respect to two different variables, first a thermal transient and second a characterization with respect to the current. The method is useful in order to detect hot spots caused by mismatch conditions in electrical parameters. The description, results, and limitations of the proposed method are discussed.


1991 ◽  
Vol 7 (6) ◽  
pp. 347-354 ◽  
Author(s):  
I Boos ◽  
K A von Plocki ◽  
M Hermann ◽  
H D Lauk
Keyword(s):  

Author(s):  
Naglaa Kamel Bahgaat ◽  
Nariman Abdel Salam ◽  
Monika Mady Roshdy ◽  
Sandy Abd Elrasheed Sakr

Rapid growth in mobile networks and the increase of the number of cellular base stations requires more energy sources, but the traditional sources of energy cause pollution and environmental problems. Therefore, modern facilities tend to use renewable energy sources instead of traditional sources. One renewable source is the photovoltaic panel, which made from semiconductor materials which absorb sunlight to generate electricity. This article discusses the importance of using solar panels to produce energy for mobile stations and also a solution to some environmental problems such as pollution. This article provides a design for a solar-power plant to feed the mobile station. Also, in this article is a prediction of all loads, the power consumed, the number of solar panels used, and solar batteries can be used to store electrical energy. Finally, an estimation of the costs of all components will be presented. Good discussion and conclusion will be presented about the results obtained. The results obtained are promising. In addition, a future plan is described to complete this important study.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Muhammad Hassan ◽  
Hussain Ahmed Tariq ◽  
Muhammad Anwar ◽  
Talha Irfan Khan ◽  
Asif Israr

Abstract This paper showcases the designing, fabrication, and performance evaluation of 90-deg alpha-type Stirling engine. The diameters of the hot and cold cylinder are 50 mm and 44 mm, respectively, with a stroke length of 70 mm. The computer-aided design (CAD) model is developed by keeping in mind the ease of manufacturing, maintenance, bearing replacements, and lubrication. After fabrication, the engine is tested by heating the hot cylinder with air as a working fluid. The engine delivered peak power of 155 watts at the temperature of 1123 K and 968 K for hot and cold cylinders, respectively. This developed prototype can be commissioned with the solar parabolic concentrator in the future based on the smooth operation while delivering power.


2011 ◽  
Vol 314-316 ◽  
pp. 1846-1850 ◽  
Author(s):  
Shuai Guo ◽  
Z.N Guo ◽  
Hong Ping Luo ◽  
Wen Cai Gu

The mechanism of the elctrochemical mechanical polishing (ECMP) technology for micro tool electrode was investigated. In this paper, suitable major process parameters on the surface quality were evaluated, the major parameters contains electrical parameters, machining gap, the working fluid and other factors. In quantitative analyses, the process of the ECMP technology were conducted. The roughness of the workpiece was reduced from a relatively high value to a mirror effect.


2021 ◽  
Vol 11 (22) ◽  
pp. 10999
Author(s):  
Jesús M. Ceresuela ◽  
Daniel Chemisana ◽  
Nacho López

With the clear goal of improving photovoltaic (PV) technology performance towards nearly-zero energy buildings, a graph theory-based model that characterizes photovoltaic panel structures is developed. An algorithm to obtain all possible configurations of a given number of PV panels is presented and the results are exposed for structures using 3 to 7 panels. Two different classifications of all obtained structures are carried out: the first one regarding the maximum power they can produce and the second according to their capability to produce energy under a given probability that the solar panels will fail. Finally, both classifications are considered simultaneously through the expected value of power production. This creates structures that are, at the same time, reliable and efficient in terms of production. The parallel associations turn out to be optimal, but some other less expected configurations prove to be rated high.


Sign in / Sign up

Export Citation Format

Share Document