scholarly journals Effect of Commercial Cyanobacteria Products on the Growth and Antagonistic Ability of Some Bioagents under Laboratory Conditions

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Nehal S. El-Mougy ◽  
Mokhtar M. Abdel-Kader

Evaluation of the efficacy of blue-green algal compounds against the growth of either pathogenic or antagonistic microorganisms as well as their effect on the antagonistic ability of bioagents was studied underin vitroconditions. The present study was undertaken to explore the inhibitory effect of commercial algal compounds, Weed-Max and Oligo-Mix, against some soil-borne pathogens. In growth medium supplemented with these algal compounds, the linear growth of pathogenic fungi decreased by increasing tested concentrations of the two algal compounds. Complete reduction in pathogenic fungal growth was observed at 2% of both Weed-Max and Oligo-Mix. Gradual significant reduction in the pathogenic fungal growth was caused by the two bioagents and by increasing the concentrations of algal compounds Weed-Max and Oligo-Mix. The present work showed that commercial algal compounds, Weed-Max and Oligo-Mix, have potential for the suppression of soil-borne fungi and enhance the antagonistic ability of fungal, bacterial, and yeast bio-agents.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Chen ◽  
Liuting Zhou ◽  
Israr Ud Din ◽  
Yasir Arafat ◽  
Qian Li ◽  
...  

Under consecutive monoculture, the abundance of pathogenic fungi, such as Fusarium oxysporum in the rhizosphere of Radix pseudostellariae, negatively affects the yield and quality of the plant. Therefore, it is pertinent to explore the role of antagonistic fungi for the management of fungal pathogens such as F. oxysporum. Our PCR-denatured gradient gel electrophoresis (DGGE) results revealed that the diversity of Trichoderma spp. was significantly declined due to extended monoculture. Similarly, quantitative PCR analysis showed a decline in Trichoderma spp., whereas a significant increase was observed in F. oxysporum. Furthermore, seven Trichoderma isolates from the R. pseudostellariae rhizosphere were identified and evaluated in vitro for their potentiality to antagonize F. oxysporum. The highest and lowest percentage of inhibition (PI) observed among these isolates were 47.91 and 16.67%, respectively. In in vivo assays, the R. pseudostellariae treated with four Trichoderma isolates, having PI > 30%, was used to evaluate the biocontrol efficiency against F. oxysporum in which T. harzianum ZC51 enhanced the growth of the plant without displaying any disease symptoms. Furthermore, the expression of eight defense-related genes of R. pseudostellariae in response to a combination of F. oxysporum and T. harzianum ZC51 treatment was checked, and most of these defense genes were found to be upregulated. In conclusion, this study reveals that the extended monoculture of R. pseudostellariae could alter the Trichoderma communities in the plant rhizosphere leading to relatively low level of antagonistic microorganisms. However, T. harzianum ZC51 could inhibit the pathogenic F. oxysporum and induce the expression of R. pseudostellariae defense genes. Hence, T. harzianum ZC51 improves the plant resistance and reduces the growth inhibitory effect of consecutive monoculture problem.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 737
Author(s):  
Marina Pekmezovic ◽  
Melina Kalagasidis Krusic ◽  
Ivana Malagurski ◽  
Jelena Milovanovic ◽  
Karolina Stępień ◽  
...  

Novel biodegradable and biocompatible formulations of “old” but “gold” drugs such as nystatin (Nys) and amphotericin B (AmB) were made using a biopolymer as a matrix. Medium chain length polyhydroxyalkanoates (mcl-PHA) were used to formulate both polyenes (Nys and AmB) in the form of films (~50 µm). Thermal properties and stability of the materials were not significantly altered by the incorporation of polyenes in mcl-PHA, but polyene containing materials were more hydrophobic. These formulations were tested in vitro against a panel of pathogenic fungi and for antibiofilm properties. The films containing 0.1 to 2 weight % polyenes showed good activity and sustained polyene release for up to 4 days. A PHA monomer, namely 3-hydroxydecanoic acid (C10-OH), was added to the films to achieve an enhanced synergistic effect with polyenes against fungal growth. Mcl-PHA based polyene formulations showed excellent growth inhibitory activity against both Candida yeasts (C. albicans ATCC 1023, C. albicans SC5314 (ATCC MYA-2876), C. parapsilosis ATCC 22019) and filamentous fungi (Aspergillus fumigatus ATCC 13073; Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102). All antifungal PHA film preparations prevented the formation of a C. albicans biofilm, while they were not efficient in eradication of mature biofilms, rendering them suitable for the transdermal application or as coatings of implants.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Zahaed Evangelista-Martínez ◽  
Erika Anahí Contreras-Leal ◽  
Luis Fernando Corona-Pedraza ◽  
Élida Gastélum-Martínez

Abstract Background Fungi are one of the microorganisms that cause most damage to fruits worldwide, affecting their quality and consumption. Chemical controls with pesticides are used to diminish postharvest losses of fruits. However, biological control with microorganisms or natural compounds is an increasing alternative to protect fruits and vegetables. In this study, the antifungal effect of Streptomyces sp. CACIS-1.5CA on phytopathogenic fungi that cause postharvest tropical fruit rot was investigated. Main body Antagonistic activity was evaluated in vitro by the dual confrontation over fungal isolates obtained from grape, mango, tomato, habanero pepper, papaya, sweet orange, and banana. The results showed that antagonistic activity of the isolate CACIS-1.5CA was similar to the commercial strain Streptomyces lydicus WYEC 108 against the pathogenic fungi Colletotrichum sp., Alternaria sp., Aspergillus sp., Botrytis sp., Rhizoctonia sp., and Rhizopus sp. with percentages ranging from 30 to 63%. The bioactive extract obtained from CACIS-1.5 showed a strong inhibition of fungal spore germination, with percentages ranging from 92 to 100%. Morphological effects as irregular membrane border, deformation, shrinkage, and collapsed conidia were observed on the conidia. Molecularly, the biosynthetic clusters of genes for the polyketide synthase (PKS) type I, PKS type II, and NRPS were detected in the genome of Streptomyces sp. CACIS-1.5CA. Conclusions This study presented a novel Streptomyces strain as a natural alternative to the use of synthetic fungicides or other commercial products having antagonistic microorganisms that were used in the postharvest control of phytopathogenic fungi affecting fruits.


2020 ◽  
Vol 21 (22) ◽  
pp. 8681
Author(s):  
Nicolò Orsoni ◽  
Francesca Degola ◽  
Luca Nerva ◽  
Franco Bisceglie ◽  
Giorgio Spadola ◽  
...  

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


2021 ◽  
Vol 87 (10) ◽  
Author(s):  
Xing Han ◽  
Jiao Wang ◽  
Lianna Liu ◽  
Fengying Shen ◽  
Qingfang Meng ◽  
...  

ABSTRACT A group of polyene macrolides mainly composed of two constituents was isolated from the fermentation broth of Streptomyces roseoflavus Men-myco-93-63, which was isolated from soil where potato scabs were repressed naturally. One of these macrolides was roflamycoin, which was first reported in 1968, and the other was a novel compound named Men-myco-A, which had one methylene unit more than roflamycoin. Together, they were designated RM. This group of antibiotics exhibited broad-spectrum antifungal activities in vitro against 17 plant-pathogenic fungi, with 50% effective concentrations (EC50) of 2.05 to 7.09 μg/ml and 90% effective concentrations (EC90) of 4.32 to 54.45 μg/ml, which indicates their potential use in plant disease control. Furthermore, their biosynthetic gene cluster was identified, and the associated biosynthetic assembly line was proposed based on a module and domain analysis of polyketide synthases (PKSs), supported by findings from gene inactivation experiments. IMPORTANCE Streptomyces roseoflavus Men-myco-93-63 is a biocontrol strain that has been studied in our laboratory for many years and exhibits a good inhibitory effect in many crop diseases. Therefore, the identification of antimicrobial metabolites is necessary and our main objective. In this work, chemical, bioinformatic, and molecular biological methods were combined to identify the structures and biosynthesis of the active metabolites. This work provides a new alternative agent for the biological control of plant diseases and is helpful for improving both the properties and yield of the antibiotics via genetic engineering.


2010 ◽  
Vol 59 (2) ◽  
pp. 200-205 ◽  
Author(s):  
Ildikó Nyilasi ◽  
Sándor Kocsubé ◽  
Miklós Pesti ◽  
Gyöngyi Lukács ◽  
Tamás Papp ◽  
...  

The in vitro antifungal activities of primycin (PN) and various statins against some opportunistic pathogenic fungi were investigated. PN completely inhibited the growth of Candida albicans (MIC 64 μg ml−1) and Candida glabrata (MIC 32 μg ml−1), and was very effective against Paecilomyces variotii (MIC 2 μg ml−1), but had little effect on Aspergillus fumigatus, Aspergillus flavus or Rhizopus oryzae (MICs >64 μg ml−1). The fungi exhibited different degrees of sensitivity to the statins; fluvastatin (FLV) and simvastatin (SIM) exerted potent antifungal activities against a wide variety of clinically important fungal pathogens. Atorvastatin, rosuvastatin and lovastatin (LOV) had a slight effect against all fungal isolates tested, whereas pravastatin was completely ineffective. The in vitro interactions between PN and the different statins were investigated using a standard chequerboard titration method. When PN was combined with FLV, LOV or SIM, both synergistic and additive effects were observed. The extent of inhibition was higher when these compounds were applied together, and the concentrations of PN and the given statin needed to block fungal growth completely could be decreased by several dilution steps. Similar interactions were observed when the variability of the within-species sensitivities was investigated.


2020 ◽  
Vol 17 (3) ◽  
pp. 300-311
Author(s):  
Longzhu Bao ◽  
Shuangshuang Wang ◽  
Di Song ◽  
Jingjing Wang ◽  
Xiali Yue ◽  
...  

Background: Due to the extensive use of a single fungicide to control crop diseases, the increase of resistant individuals leads to control failures. The search for molecules with fungicidal activity is still ongoing. Strobilurin is one of the most popularly used fungicides in the agrochemical field. A large number of strobilurin derivatives with both high activity and low toxicity have been developed. Methods: In the present study, a series of novel ortho-substituted benzyl carboxylates were efficiently synthesized by the reaction of (E)-methyl 2-(2-(bromom-ethyl)phenyl)-2-methox-yiminoaceta with various carboxylic acids. Their structures were confirmed and characterized by 1H NMR, 13C NMR, and ESI-MS analysis. Their fungicidal activities against common phytopathogenic fungi from six major cash crops were screened based on the pesticides guidelines for the laboratory bioactivity tests. Results: The primary fungicidal activity test results indicate that all compounds showed a certain inhibitory effect on the growth of 13 plants pathogenic fungi at a concentration of 100 ppm, and Compd. 3 has the most obvious inhibitory effect on all fungi. Further fungicidal activity studies indicate that some of these novel strobilurin derivatives containing carboxylate unit exhibited potential in vitro fungicidal activities at the dosage of 6.25 mg/L-1. Conclusion: A series of the ortho-substituted benzyl carboxylates derivatives containing β- methoxyacrylate moiety were designed and synthesized by modifying the side chain of traditional strobilurin fungicide. Compd. 3, Compd. 2 and Compd. 16 were identified as the most promising candidates for further study.


2014 ◽  
Vol 4 (3) ◽  
pp. 118-126
Author(s):  
Souad Zouhair ◽  
Souad Qjidaa Qjidaa ◽  
Atar Selouane ◽  
Driss Bouya ◽  
Cony Decock ◽  
...  

Five fungicides azoxystrobin (ortiva), benomyl (benlate), hexaconazole (hexa), pyrimethanil (scala) and thiabendazole (tectocal) were tested sepa-rately in vitro for their ability to inhibit the growth of two ochratoxigenic strains of A. niger and A. carbonarius previously isolated from grapes. All fungicides effectively reduced the growth rate of A. carbonarius and A. niger from 34 to 100% at the recommended dose (RD). Thiabendazole caused total inhibition of spore germination and growth of the two strains, regardless of the doses assayed. Benomyl completely inhibited growth of A. niger whereas for A. carbonarius, concentrations above 0.02xRD were required to prevent the growth. The inhibitory effect of hexaconazole, azoxystrobin and pyrime-thanil was dose-dependent. At sub-lethal concentrations of three fungicides, a dose-dependent increase in in ochratoxin A biosynthesis by two strains was observed. The use of fungicide should be checked for its ability to inhibit fungal growth as well as for their effect in terms of mycotoxins biosynthesis.


2010 ◽  
Vol 56 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Joey B. Tanney ◽  
Leonard J. Hutchison

Glyphosate-based herbicides are used extensively in forestry and agriculture to control broadleaf plant competition. A review of the literature offers conflicting results regarding the impact of glyphosate on fungal growth. This study investigated the effects of 7 glyphosate concentrations (1, 2, 5, 10, 50, 100, and 1000 µg·mL–1) of Roundup (35.6% glyphosate) on the number of colony-forming units (CFUs) of soilborne microfungi from a boreal forest soil sample and on the in vitro linear growth of 20 selected species of microfungi representative of this boreal forest soil. Concentrations of glyphosate at 50 µg·mL–1and higher significantly decreased the number of CFUs observed. At glyphosate concentrations equal to 5 µg·mL–1, 13 fungal species exhibited colony diameters less than 50% than that of their respective controls. Several species showed an inhibition of pigmentation and sporulation when subjected to glyphosate concentrations of 1 µg·mL–1. Differential sensitivity was observed among species at the various concentrations, suggesting the possibility of a shift towards tolerant species of fungi when they are exposed to glyphosate.


2004 ◽  
Vol 50 (9) ◽  
pp. 737-744 ◽  
Author(s):  
K Manjula ◽  
G Krishna Kishore ◽  
A R Podile

In foliar and postharvest biocontrol systems, the use of active metabolites produced by antagonistic microorganisms is advantageous compared with the use of living microorganisms. Chitinases, a major group of hydrolytic enzymes produced by biocontrol agents, are involved in the lysis of cell walls of pathogenic fungi. In the present study, an attempt was made to test the partially purified β-1,4-N-acetylglucosaminidase (NAGase) of a biocontrol strain Bacillus subtilis AF 1 for control of rust in groundnut (caused by Puccinia arachidis) and soft rot in lemons (caused by Aspergillus niger). Four proteins of molecular mass 67, 40, 37, and 32 kDa were isolated from the culture filtrates of AF 1 by affinity chromatography, of which the 67-kDa protein has detectable chitinolytic ability. This protein (NAGase) effectively inhibited the in vitro growth of A. niger in microtitre plates. In the presence of NAGase, germination of urediniospores of P. arachidis was reduced by 96% compared with the control. In a detached leaf bioassay, NAGase reduced the rust lesion frequency by >60%. NAGase significantly reduced the incidence of soft rot in harvested lemon fruits. However, fresh cells and (or) alginate formulation of AF 1 were more effective than NAGase in control of both of the test plant – pathogen systems.Key words: chitinase, peanut rust, lemon fruit rot, biocontrol.


Sign in / Sign up

Export Citation Format

Share Document