scholarly journals Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue Engineering Applications

2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Yukihiko Kinoshita ◽  
Hatsuhiko Maeda

Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies.

2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Keith A. Blackwood ◽  
Nathalie Bock ◽  
Tim R. Dargaville ◽  
Maria Ann Woodruff

There remains a substantial shortfall in the treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue-engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors, which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However due to the cost and potential complications associated with growth factors, controlling the rate of release is an important design consideration when developing new bone tissue engineering strategies. This paper will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.


Author(s):  
Ozan Karaman ◽  
Cenk Celik ◽  
Aylin Sendemir Urkmez

Cranial, maxillofacial, and oral fractures, as well as large bone defects, are currently being treated by auto- and allograft procedures. These techniques have limitations such as immune response, donor-site morbidity, and lack of availability. Therefore, the interest in tissue engineering applications as replacement for bone graft has been growing rapidly. Typical bone tissue engineering models require a cell-supporting scaffold in order to maintain a 3-dimensional substrate mimicking in vivo extracellular matrix for cells to attach, proliferate and function during the formation of bone tissue. Combining the understanding of molecular and structural biology with materials engineering and design will enable new strategies for developing biological tissue constructs with clinical relevance. Self-assembled biomimetic scaffolds are especially suitable as they provide spatial and temporal regulation. Specifically, self-assembling peptides capable of in situ gelation serve as attractive candidates for minimally invasive injectable therapies in bone tissue engineering applications.


2007 ◽  
Vol 330-332 ◽  
pp. 1173-1176 ◽  
Author(s):  
Cai Li ◽  
Run Liang Chen ◽  
Lei Liu ◽  
Yun Feng Lin ◽  
Wei Dong Tian ◽  
...  

Poly(lactide-co-glycolide) (PLGA) and alginate(AG) are the most promising scaffolds in the bone tissue engineering for their stable mechanical characters and three-dimensional porous structure. This study aimed to assay the in vivo osteogenesis potentials by loading the autogenous bone marrow stromal cells (BMSCs) on PLGA or AG. The results suggested that PLGA and AG are both ideal bone tissue engineering scaffold. BMSCs/AG has stronger osteogenesis potentials in vivo than BMSCs/PLGA.


2007 ◽  
Vol 330-332 ◽  
pp. 963-966 ◽  
Author(s):  
Lei Liu ◽  
Run Liang Chen ◽  
Yun Feng Lin ◽  
Cai Li ◽  
Wei Dong Tian ◽  
...  

Bone tissue engineering is a promising way to repair of bone defects. To choose a proper scaffold is still a disputable problem in bone tissue engineering. This study aimed to compare the effects of repairing critical calvarial defects with the compounds of autogenous bone marrow stromal cells (BMSCs) and coral hydroxyapatite(CHA), hydroxyapatite/ tricalcium phosphate (HA/TCP), poly(lactide-co-glycolide) (PLGA) and alginate (AG). The results showed that CHA and AG were satisfactory bone tissues engineering scaffolds among the four kinds of materials. BMSCs/CHA and BMSCs/AG are promising techniques for reconstruction of bone defects.


2014 ◽  
Vol 2 (38) ◽  
pp. 6611-6618 ◽  
Author(s):  
Jun Yang ◽  
Teng Long ◽  
Nan-Fei He ◽  
Ya-Ping Guo ◽  
Zhen-An Zhu ◽  
...  

A chitosan/bioglass three-dimensional porous scaffold with excellent biocompatibility and mechanical properties has been developed for the treatment of bone defects.


Author(s):  
Juan Vivanco ◽  
Josh Slane ◽  
Heidi Ploeg

Bone grafting is an exceptionally common procedure used to repair bone defects within orthopaedics, craniofacial surgery and dentistry. It is estimated that 2.2 million grafting procedures are performed annually worldwide [1] and maintain a market share of $7 billion in the United States alone [2]. There has been a considerable rise in the interest of using bioactive ceramic materials, such as hydroxyapatite and tricalcium phosphate (TCP), to serve as synthetic replacements for autogenous bone grafts, which suffer from donor site morbidity and limited supply [3]. These ceramic materials (which can be formed into three-dimensional scaffolds) are advantageous due to their inherent biocompatibility, osteoconductivy, osteogenecity and osteointegrity [2].


2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Damion T. Dixon ◽  
Cheryl T. Gomillion

Bone tissue engineering strategies attempt to regenerate bone tissue lost due to injury or disease. Three-dimensional (3D) scaffolds maintain structural integrity and provide support, while improving tissue regeneration through amplified cellular responses between implanted materials and native tissues. Through this, scaffolds that show great osteoinductive abilities as well as desirable mechanical properties have been studied. Recently, scaffolding for engineered bone-like tissues have evolved with the use of conductive materials for increased scaffold bioactivity. These materials make use of several characteristics that have been shown to be useful in tissue engineering applications and combine them in the hope of improved cellular responses through stimulation (i.e., mechanical or electrical). With the addition of conductive materials, these bioactive synthetic bone substitutes could result in improved regeneration outcomes by reducing current factors limiting the effectiveness of existing scaffolding materials. This review seeks to overview the challenges associated with the current state of bone tissue engineering, the need to produce new grafting substitutes, and the promising future that conductive materials present towards alleviating the issues associated with bone repair and regeneration.


Author(s):  
David Kamadjaja

Maxillofacial bone defects due to tumor resection, trauma or infections should be reconstructed to maintain the bone continuity in order to preserve its masticatory, speech and esthetic functions. Autogenous bone graft have been the gold standard for mandibular defects reconstruction, however, it is associated with limitation in volume and availability as well as the donor site morbidities. Tissue engineering approach has been proved to be a good alternative to overcome the limitation of autogenous bone graft. Tissue engineering studies have been conducted combining various sources of mesenchymal stem cell, scaffolds, and or signaling molecules. The paper aims to provide information on the development of bone tissue engineering researches to reconstruct bone defects through results of numerous studies obtained in the English literature. As the conclusion, bone tissue engineering is a potential approach to reconstruct maxillofacial bone defects. Keywords: scaffold,osteoconduction, mesenchymal stem cell, bone regeneration, bone integration


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 946
Author(s):  
Piotr Szczepańczyk ◽  
Monika Szlachta ◽  
Natalia Złocista-Szewczyk ◽  
Jan Chłopek ◽  
Kinga Pielichowska

To meet the needs of clinical medicine, bone tissue engineering is developing dynamically. Scaffolds for bone healing might be used as solid, preformed scaffolding materials, or through the injection of a solidifiable precursor into the defective tissue. There are miscellaneous biomaterials used to stimulate bone repair including ceramics, metals, naturally derived polymers, synthetic polymers, and other biocompatible substances. Combining ceramics and metals or polymers holds promise for future cures as the materials complement each other. Further research must explain the limitations of the size of the defects of each scaffold, and additionally, check the possibility of regeneration after implantation and resistance to disease. Before tissue engineering, a lot of bone defects were treated with autogenous bone grafts. Biodegradable polymers are widely applied as porous scaffolds in bone tissue engineering. The most valuable features of biodegradable polyurethanes are good biocompatibility, bioactivity, bioconductivity, and injectability. They may also be used as temporary extracellular matrix (ECM) in bone tissue healing and regeneration. Herein, the current state concerning polyurethanes in bone tissue engineering are discussed and introduced, as well as future trends.


2018 ◽  
pp. 476-504 ◽  
Author(s):  
Ozan Karaman ◽  
Cenk Celik ◽  
Aylin Sendemir Urkmez

Cranial, maxillofacial, and oral fractures, as well as large bone defects, are currently being treated by auto- and allograft procedures. These techniques have limitations such as immune response, donor-site morbidity, and lack of availability. Therefore, the interest in tissue engineering applications as replacement for bone graft has been growing rapidly. Typical bone tissue engineering models require a cell-supporting scaffold in order to maintain a 3-dimensional substrate mimicking in vivo extracellular matrix for cells to attach, proliferate and function during the formation of bone tissue. Combining the understanding of molecular and structural biology with materials engineering and design will enable new strategies for developing biological tissue constructs with clinical relevance. Self-assembled biomimetic scaffolds are especially suitable as they provide spatial and temporal regulation. Specifically, self-assembling peptides capable of in situ gelation serve as attractive candidates for minimally invasive injectable therapies in bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document