scholarly journals Antimicrobial Activity of Some Derivatives of 1,4-Dihydropyridines

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Prabha Mehta ◽  
Prabha Verma

Hantzsch reported the synthesis of functionalized 1,4-dihydropyridines via three-component condensation of an aromatic aldehyde, ketoester, and ammonium hydroxide. This multicomponent reaction is of much importance due to excellent pharmacological properties of dihydropyridines. In this account, we synthesized some halo- and nitrophenyl dihydropyridines and evaluated their antimicrobial activity. The minimum inhibitory concentration (MIC) was determined by microdilution technique in Mueller Hinton broth. The MICs were recorded after 24 hours of incubation at 37°C. These results showed that these compounds exhibited significant to moderate activities against both Gram-(+) and Gram-(−) organisms.

2009 ◽  
Vol 6 (3) ◽  
pp. 770-774 ◽  
Author(s):  
L. C. C. Heda ◽  
Rashmi Sharma ◽  
C. Pareek ◽  
P. B. Chaudhari

P. Biginelli reported the synthesis of functionalized 3, 4 dihydropyrimidine-2 (1H)-ones via three component condensation of an aromatic aldehyde, urea and ethylacetoacetate. This multicomponent reaction is of much importance due to excellent pharmacological properties of dihydropyrimidines. In this account, we synthesized some halo substituted indole dihydropyrimidines and evaluated their antimicrobial activity. The minimum inhibitory concentration (MIC) was determined by micro dilution technique in Mueller-Hinton broth. The MICs were recorded after 24 hours of incubation at 37 °C. These results are promising, showing these compounds are biologically active.


1996 ◽  
Vol 79 (6) ◽  
pp. 1294-1299 ◽  
Author(s):  
Melissa E Lenczewski ◽  
Sean T McGavin ◽  
Karl Vandyke

Abstract Minimum inhibitory concentration (MIC) is used to test resistance of microorganisms against antibiotics and to test cosmetic preservatives. This research expanded traditional MIC with automation and application of colorimetric endpoint MIC. All experiments included common cosmetic preservatives and microorganisms used in testing preservative efficacy. An autodilutor using three 96-well microliter plates processed 6 preservatives against 1 microorganism in 15 min. The unique tip design made it possible to accurately deliver viscous test materials that cannot be dispensed accurately with vacuum or fluid-filled systems. Tetrazolium violet, a redox indicator, provided a visual color change from clear to purple at the MIC. Optimum concentration of tetrazolium violet was 0.01 % with addition of 0.2% glucose to Mueller-Hinton broth for both gram-positive and gram-negative bacteria. The colorimetric endpoint was evident after 24 h from previously cryogenically stored organisms that were thawed before use and after 4 h for 18–24 h broth cultures subcultured from agar plates. The autodilutor accurately pipetted viscous cosmetic products such as hand lotion and shampoo, which cannot be pipetted with a traditional micropipetter.


2015 ◽  
Vol 9 (10) ◽  
pp. 1086-1090 ◽  
Author(s):  
Keramettin Yanik ◽  
Emin Guluzade ◽  
Kemal Bilgin ◽  
Adil Karadag ◽  
Cafer Eroglu ◽  
...  

Introduction: The aim of this study was to investigate the effectiveness of ceftaroline against agents frequently isolated from respiratory tract and wound infections. Methodology: The study included a total of 250 strains isolated from various clinical specimens, among which were Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysagalactiae, Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catharralis. The bacteria were identified using the matrix-assisted laser desorption/ionization time-of-flight method and conventional methods. The bacteria’s antibiotic susceptibility was tested using appropriate broth microdilution. Mueller-Hinton broth with 4% lysed horse blood, Haemophilus test medium broth, and Mueller-Hinton broth were used. Ceftaroline fosamil results at the minimum inhibitory concentration (MIC) were evaluated using Clinical and Laboratory Standards Institute (CLSI) criteria. For quality assurance, E. coli ATCC 35218, S. aureus ATCC 29213, S. aureus ATCC 43300, S. pneumoniae ATCC 49619, H. influenzae ATCC 49766, H. influenzae ATCC 10211, and H. influenzae ATCC 49247 standard strains were used. Results: According to CLSI criteria, resistance was not detected in any strains. Due to the absence of CLSI criteria for M. catharralis, the susceptibility state for this bacterium was not evaluated. The various strains’ MIC50–MIC90 values were as follows: for S. pyogenes, 0.015–0.06; for S. agalactiae, 0.03–0.125; for S. dysagalactiae, 0.03–0.06; for S. pneumoniae, 0.06–0.125; for H. influenzae, 0.015–0.125; and for M. catharralis, 0.5–1. Conclusions: The results indicate that ceftaroline is quite effective against bacteria that are frequently isolated from respiratory tract and wound infections.


2020 ◽  
Vol 21 (11) ◽  
pp. 1129-1137 ◽  
Author(s):  
Somayeh Mirsadeghi ◽  
Masoumeh F. Koudehi ◽  
Hamid R. Rajabi ◽  
Seied M. Pourmortazavi

Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides. Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM. Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively. Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.


2017 ◽  
Vol 12 (01) ◽  
pp. 69-71
Author(s):  
Shamala T ◽  
A.M. Krupanidhi ◽  
Shanmukhappa S ◽  
B.E. Basavarajappa ◽  
Jayamma kulkarni

2020 ◽  
Vol 36 (2) ◽  
Author(s):  
Ana Flávia da Silva ◽  
Marisa de Oliveira Lopes ◽  
Cláudio Daniel Cerdeira ◽  
Ingridy Simone Ribeiro ◽  
Isael Aparecido Rosa ◽  
...  

The radish (Raphanus sativus L.) is a vegetable of the Brassicaceae family cultivated worldwide and has several medicinal properties. Its biological activities are related to various secondary metabolites present in the species, especially phenolics. Thus, the objectives of this study were the chemical analysis and evaluation of the antioxidant and antimicrobial activities of the dry extract and fractions of the fodder turnip leaves (R. sativus var. oleiferus Metzg.). Samples were analyzed by mass spectrometry and the antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method and the reducing power method. Antimicrobial activity was determined by the agar diffusion and microdilution methods. The total phenols were concentrated in the butanol fraction (121.27 mg GAE/g) and the flavonoids were concentrated in the ethyl acetate fraction (98.02 mg EQ/g). The ethyl acetate fraction showed the best antioxidants results, with 83.45% of free radical scavenging and 11.34% of ferric ions reduction. The analysis of antimicrobial activity showed that the dry extract had the highest average zone of inhibition against Bacillus subtilis (18.67 mm). Smaller values of the minimum inhibitory concentration for Micrococcus luteus were, and the ethyl acetate fraction showed a lower minimum inhibitory concentration (0.1 mg/ml) for that microorganism. There was a strong correlation between the antioxidant activity and the content of phenols and flavonoids. The results showed the potential antioxidant and antimicrobial activities of this extract with the ethyl acetate fraction being most promising for further studies.


Author(s):  
E. Bagyaraj ◽  
E. Vakees ◽  
M. Aboobucker Sithique

Versatile hybrid organic polymers are prepared using two active intermediates such as cynuric chloride and chitosan derivatives. The prepared chalcones are characterized by using FT-IR, UV, and proton NMR, thermal analysis and Minimum inhibitory Concentration. Thermal stability of the synthesized hybrid polymer is found using TGA and the hybrid chitosan derivative chalcone is thermally stable up to 270 °C. The antimicrobial activity of the prepared chitosan containing chalcone moiety are find out using Minimum Inhibitory Concentration (MIC) method. The synthesized versatile chalcone shows excellent antimicrobial activity against gram-negative bacteria such as Pseudomonas aeruginosa; and Gram-positive bacteria Chalcone containing halogen moiety shows high activity (MIC 7.8 µg/mL) than the hydroxyl containing chalcone. Cytotoxicity activity of the synthesized composites shows high activity.


2014 ◽  
Vol 9 (9) ◽  
pp. 1934578X1400900
Author(s):  
Camila Hernandes ◽  
Silvia H. Taleb-Contini ◽  
Ana Carolina D. Bartolomeu ◽  
Bianca W. Bertoni ◽  
Suzelei C. França ◽  
...  

Reports on the chemical and pharmacological profile of the essential oil of Schinus weinmannifolius do not exist, although other Schinus species have been widely investigated for their biological activities. This work aimed to evaluate the chemical composition and antimicrobial activity of the essential oil of S. weinmannifolius collected in the spring and winter. The essential oils were extracted by hydrodistillation, analyzed by GC/MS and submitted to microdilution tests, to determine the minimum inhibitory concentration. The oils displayed different chemical composition and antimicrobial action. Bicyclogermacrene and limonene predominated in the oils extracted in the winter and spring, respectively, whereas only the latter oil exhibited antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document