scholarly journals Day-to-Day Variability of H and Z Components of the Geomagnetic Field at the African Longitudes

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
T. N. Obiekezie ◽  
S. C. Obiadazie ◽  
G. A. Agbo

The Day-to-day variability of the geomagnetic field elements at the African longitudes has been studied for the year 1987 using geomagnetic data obtained from four different African observatories. The analysis was carried out on solar quiet days using hourly values of the Horizontal, , and vertical, , geomagnetic field values. The results of this study confirm that Sq is a very changeable phenomenon, with a strong day-to-day variation. This day-to-day variation is seen to be superimposed on magnetic disturbances of a magnetospheric origin.

2012 ◽  
Vol 1 (2) ◽  
pp. 85-101 ◽  
Author(s):  
E. Kozlovskaya ◽  
A. Kozlovsky

Abstract. Seismic broadband sensors with electromagnetic feedback are sensitive to variations of surrounding magnetic field, including variations of geomagnetic field. Usually, the influence of the geomagnetic field on recordings of such seismometers is ignored. It might be justified for seismic observations at middle and low latitudes. The problem is of high importance, however, for observations in Polar Regions (above 60° geomagnetic latitude), where magnitudes of natural magnetic disturbances may be two or even three orders larger. In our study we investigate the effect of ultra-low frequency (ULF) magnetic disturbances, known as geomagnetic pulsations, on the STS-2 seismic broadband sensors. The pulsations have their sources and, respectively, maximal amplitudes in the region of the auroral ovals, which surround the magnetic poles in both hemispheres at geomagnetic latitude (GMLAT) between 60° and 80°. To investigate sensitivity of the STS-2 seismometer to geomagnetic pulsations, we compared the recordings of permanent seismic stations in northern Finland to the data of the magnetometers of the IMAGE network located in the same area. Our results show that temporary variations of magnetic field with periods of 40–150 s corresponding to regular Pc4 and irregular Pi2 pulsations are seen very well in recordings of the STS-2 seismometers. Therefore, these pulsations may create a serious problem for interpretation of seismic observations in the vicinity of the auroral oval. Moreover, the shape of Pi2 magnetic disturbances and their periods resemble the waveforms of glacial seismic events reported originally by Ekström (2003). The problem may be treated, however, if combined analysis of recordings of co-located seismic and magnetic instruments is used.


Author(s):  
Andrei Vorobev ◽  
Vyacheslav Pilipenko ◽  
Gulnara Vorobeva ◽  
Olga Khristodulo

Introduction: Magnetic stations are one of the main tools for observing the geomagnetic field. However, gaps and anomalies in time series of geomagnetic data, which often exceed 30% of the number of recorded values, negatively affect the effectiveness of the implemented approach and complicate the application of mathematical tools which require that the information signal is continuous. Besides, the missing values ​​add extra uncertainty in computer simulation of dynamic spatial distribution of geomagnetic variations and related parameters. Purpose: To develop a methodology for improving the efficiency of technical means for observing the geomagnetic field. Method: Creation of problem-oriented digital twins of magnetic stations, and their integration into the collection and preprocessing of geomagnetic data, in order to simulate the functioning of their physical prototypes with a certain accuracy. Results: Using Kilpisjärvi magnetic station (Finland) as an example, it is shown that the use of digital twins, whose information environment is made up of geomagnetic data from adjacent stations, can provide the opportunity for reconstruction (retrospective forecast) of geomagnetic variation parameters with a mean square error in the auroral zone of up to 11.5 nT. The integration of problem-oriented digital twins of magnetic stations into the processes of collecting and registering geomagnetic data can provide automatic identification and replacement of missing and abnormal values, increasing, due to the redundancy effect, the fault tolerance of the magnetic station as a data source object. For example, the digital twin of Kilpisjärvi station recovers 99.55% of annual information, and 86.73% of it has an error not exceeding 12 nT. Discussion: Due to the spatial anisotropy of geomagnetic field parameters, the error at the digital twin output will be different in each specific case, depending on the geographic location of the magnetic station, as well as on the number of the surrounding magnetic stations and the distance to them. However, this problem can be minimized by integrating geomagnetic data from satellites into the information environment of the digital twin. Practical relevance: The proposed methodology provides the opportunity for automated diagnostics of time series of geomagnetic data for outliers and anomalies, as well as restoration of missing values and identification of small-scale disturbances.


Author(s):  
Arunas Buga ◽  
Simona Einorytė ◽  
Romuald Obuchovski ◽  
Vytautas Puškorius ◽  
Petras Petroškevicius

Lithuania is successfully integrated in the European geomagnetic field research activities. Six secular variation research stations were established in 1999 and precise geomagnetic field measurements were performed there in 1999, 2001, 2004, 2007 and 2016. Obtained diurnal magnetic field variations at measuring station and neighbouring observatories were analysed. All measurements are reduced to the mean of the year using data from geomagnetic observatory of Belsk. Based on the measured data the analysis of geomagnetic field parameter secular changes was performed. Results of the presented research are useful for updating the old geomagnetic data as well as for estimation of accuracy of declination model.


2013 ◽  
Vol 66 (6) ◽  
pp. 799-811 ◽  
Author(s):  
Caifa Guo ◽  
Hong Cai ◽  
G.H.M. van der Heijden

In this paper, some improvements in feature extraction for geomagnetic matching are made. Geomagnetic entropy is extracted from the total intensity of the geomagnetic field and its performance for navigation is tested with real geomagnetic data. The matching progress is divided into two phrases: rough matching and precise matching. In the rough matching phase, a sub-region that includes the real position is obtained by using the total intensity of the geomagnetic field as the matching feature. The entropy is applied to precise matching in the sub-region to obtain the final result. Simulations show that the navigation effect is significantly improved with the entropy as an assistant feature. The combined match probability is much better than the results derived from those using only total intensity as the matching feature. This is especially true when the flight vehicle passes through an area without abundant magnetic information.


2013 ◽  
Vol 13 (9) ◽  
pp. 2189-2194 ◽  
Author(s):  
F. Masci ◽  
J. N. Thomas

Abstract. Many papers document the observation of earthquake-related precursory signatures in geomagnetic field data. However, the significance of these findings is ambiguous because the authors did not adequately take into account that these signals could have been generated by other sources, and the seismogenic origin of these signals have not been validated by comparison with independent datasets. Thus, they are not reliable examples of magnetic disturbances induced by the seismic activity. Hayakawa et al. (2004) claim that at the time of the 2000 Izu swarm the Hurst exponent of the Ultra-Low-Frequency (ULF: 0.001–10 Hz) band of the geomagnetic field varied in accord with the energy released by the seismicity. The present paper demonstrates that the behaviour of the Hurst exponent was insufficiently investigated and also misinterpreted by the authors. We clearly show that during the Izu swarm the changes of the Hurst exponent were strongly related to the level of global geomagnetic activity and not to the increase of the local seismic activity.


2021 ◽  
Vol 929 (1) ◽  
pp. 012022
Author(s):  
S A Imashev

Abstract The aim of this study is to present a method for detection of outliers in the time series of total intensity of geomagnetic field using Extended Isolation Forest algorithm. The method is consisted of three steps: 1) generation of additional features that take into account the regular daily variation and smooth behaviour of normal data, 2) detection of potential outliers based on ensemble of extended isolating trees and 3) subsequent refinement based on difference between the outlier and its replacement with interpolated value. Application of the method for detection of outliers in yearly time series of the total geomagnetic field at Ak-Suu and Kegety stations showed that the algorithm identifies both global and contextual outliers. Average classification metrics for the method are characterized as high and have the following values: precision 94.3%, recall 93.9% and F-score 94.5%, and probabilities of errors of the first and second kind are comparable to similar algorithms used for detection of outliers in magnetograms of different sampling rate.


2004 ◽  
Vol 22 (3) ◽  
pp. 985-992 ◽  
Author(s):  
J. L. Le Mouël ◽  
E. Blanter ◽  
M. Shnirman

Abstract. Daily means of the horizontal components X (north) and Y (east) of the geomagnetic field are available in the form of long series (several tens of years). Nine observatories are used in the present study, whose series are among the longest. The amplitudes of the 6-month and 1-year periodic variations are estimated using a simple but original technique. A remarkably clear result emerges from the complexity of the geomagnetic data: the amplitude of the 6-month line presents, in all observatories, the same large variation (by a factor of 1.7) over the 1920–1990 time span, regular and quasi-sinusoidal. Nothing comparable comes out for the annual line. The 6-month line results from the modulation by an astronomical mechanism of a magnetospheric system of currents. As this latter mechanism is time invariant, the intensity of the system of currents itself must present the large variation observed on the 6-months variation amplitude. This variation presents some similarities with the one displayed by recent curves of reconstructed solar irradiance or the "Earth's temperature". Finally, the same analysis is applied to the aa magnetic index.Key words. Geomagnetism and paleomagnetism (time variations, diurnal to secular). Magnetospheric physics (current systems; polar cap phenomena)


2007 ◽  
Vol 14 (2) ◽  
pp. 163-180 ◽  
Author(s):  
A. Fournier ◽  
C. Eymin ◽  
T. Alboussière

Abstract. Secular variations of the geomagnetic field have been measured with a continuously improving accuracy during the last few hundred years, culminating nowadays with satellite data. It is however well known that the dynamics of the magnetic field is linked to that of the velocity field in the core and any attempt to model secular variations will involve a coupled dynamical system for magnetic field and core velocity. Unfortunately, there is no direct observation of the velocity. Independently of the exact nature of the above-mentioned coupled system – some version being currently under construction – the question is debated in this paper whether good knowledge of the magnetic field can be translated into good knowledge of core dynamics. Furthermore, what will be the impact of the most recent and precise geomagnetic data on our knowledge of the geomagnetic field of the past and future? These questions are cast into the language of variational data assimilation, while the dynamical system considered in this paper consists in a set of two oversimplified one-dimensional equations for magnetic and velocity fields. This toy model retains important features inherited from the induction and Navier-Stokes equations: non-linear magnetic and momentum terms are present and its linear response to small disturbances contains Alfvén waves. It is concluded that variational data assimilation is indeed appropriate in principle, even though the velocity field remains hidden at all times; it allows us to recover the entire evolution of both fields from partial and irregularly distributed information on the magnetic field. This work constitutes a first step on the way toward the reassimilation of historical geomagnetic data and geomagnetic forecast.


Sign in / Sign up

Export Citation Format

Share Document