scholarly journals A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Junaid Iqbal ◽  
Ruqaiyyah Siddiqui ◽  
Shahana Urooj Kazmi ◽  
Naveed Ahmed Khan

Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract ofJuglans regiatree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract ofJ. regiabark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria,Salmonella typhior enteropathogenicE. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30%) in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action ofJ. regiaextract against multiple drug-resistant bacteria when tested with a range of antibiotics.

2019 ◽  
Vol 20 (10) ◽  
pp. 2468 ◽  
Author(s):  
Sibhghatulla Shaikh ◽  
Nazia Nazam ◽  
Syed Mohd Danish Rizvi ◽  
Khurshid Ahmad ◽  
Mohammad Hassan Baig ◽  
...  

Multiple drug-resistant bacteria are a severe and growing public health concern. Because relatively few antibiotics have been approved over recent years and because of the inability of existing antibiotics to combat bacterial infections fully, demand for unconventional biocides is intense. Metallic nanoparticles (NPs) offer a novel potential means of fighting bacteria. Although metallic NPs exert their effects through membrane protein damage, superoxide radicals and the generation of ions that interfere with the cell granules leading to the formation of condensed particles, their antimicrobial potential, and mechanisms of action are still debated. This article discusses the action of metallic NPs as antibacterial agents, their mechanism of action, and their effect on bacterial drug resistance. Based on encouraging data about the antibacterial effects of NP/antibiotic combinations, we propose that this concept be thoroughly researched to identify means of combating drug-resistant bacteria.


2012 ◽  
Vol 78 (8) ◽  
pp. 2768-2774 ◽  
Author(s):  
Ashley N. Brown ◽  
Kathryn Smith ◽  
Tova A. Samuels ◽  
Jiangrui Lu ◽  
Sherine O. Obare ◽  
...  

ABSTRACTWe show here that silver nanoparticles (AgNP) were intrinsically antibacterial, whereas gold nanoparticles (AuNP) were antimicrobial only when ampicillin was bound to their surfaces. Both AuNP and AgNP functionalized with ampicillin were effective broad-spectrum bactericides against Gram-negative and Gram-positive bacteria. Most importantly, when AuNP and AgNP were functionalized with ampicillin they became potent bactericidal agents with unique properties that subverted antibiotic resistance mechanisms of multiple-drug-resistant bacteria.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-8
Author(s):  
Bhoj Raj Singh ◽  
Akanksha Yadav ◽  
Dharmendra Kumar Sinh ◽  
Obli Rajendran Vinodh Kum

2018 ◽  
Vol 12 (18) ◽  
pp. 426-432 ◽  
Author(s):  
Ram Paudel Mukti ◽  
Rajbanshi Neeta ◽  
Kumar Sah Anil ◽  
Acharya Sameer ◽  
Pant Bijaya

Sign in / Sign up

Export Citation Format

Share Document