scholarly journals Surface-Enhanced Raman Scattering Study of Silver Nanoparticles Prepared by Using MC as a Template

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yudong Lu ◽  
Shanyuan Feng ◽  
Xueyun Liu ◽  
Lihui Chen

A good Ag-based SERS substrate has been prepared by one-pot reaction using methyl cellulose as a template. Effects of methyl cellulose concentration, silver ammonia chloride solution concentration, reaction duration, and reducing agent on silver nanoparticles were discussed in this paper. The performance of the obtained Ag nanoparticles was characterized by UV-visible spectroscopy, transmission electron microscopy, and surface-enhanced Raman spectroscopy. Results show that the reducing agent plays a crucial role in the performance of silver nanoparticles. Optimum preparation conditions of synthesis of SERS substrates were as follows: 10 mM silver ammonia chloride and 0.2% MC at 75°C, reducing in 0.2% reducing agent at 120 min. TEM studies reveal that particles are mostly spherical and rod in shape with an average size of 80 nm. Silver nanoparticles prepared with MC as a template have been shown to provide strong SERS enhancement signals of R6G, which can be used as a good Ag-based SERS substrate in the analytical environment for routine measurements.

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1531 ◽  
Author(s):  
Shi Bai ◽  
Yongjun Du ◽  
Chunyan Wang ◽  
Jian Wu ◽  
Koji Sugioka

Surface-enhanced Raman spectroscopy (SERS) has advanced over the last four decades and has become an attractive tool for highly sensitive analysis in fields such as medicine and environmental monitoring. Recently, there has been an urgent demand for reusable and long-lived SERS substrates as a means of reducing the costs associated with this technique To this end, we fabricated a SERS substrate comprising a silicon nanowire array coated with silver nanoparticles, using metal-assisted chemical etching followed by photonic reduction. The morphology and growth mechanism of the SERS substrate were carefully examined and the performance of the fabricated SERS substrate was tested using rhodamine 6G and dopamine hydrochloride. The data show that this new substrate provides an enhancement factor of nearly 1 × 108. This work demonstrates that a silicon nanowire array coated with silver nanoparticles is sensitive and sufficiently robust to allow repeated reuse. These results suggest that this newly developed technique could allow SERS to be used in many commercial applications.


2021 ◽  
Author(s):  
Yamin Lin ◽  
Mengmeng Zheng ◽  
Xin Zhao ◽  
Dan Liu ◽  
Jiamin Gao ◽  
...  

Herein, we proposed a simple one-pot sol-thermal strategy to prepare highly sensitive and reproducible SERS substrate. The silver-doped hydroxyapatite nanocomposite (HAp/Ag) could suppress the oxidation of the silver nanoparticles, which...


2019 ◽  
Vol 29 (4) ◽  
pp. 521
Author(s):  
Tran Cao Dao ◽  
Truc Quynh Ngan Luong ◽  
Tuan Anh Cao ◽  
Ngoc Minh Kieu

Sudan dyes are red colorants banned from use for food due to their toxic properties. However, because of the cheapness, they are sometimes adulterated into food illegally. Currently surface-enhanced Raman spectroscopy (SERS) is emerging as a good method to detect residues (including trace amounts) of Sudan dyes in food. In this report we present the SERS detection of Sudan I (a type of Sudan dyes) to concentrations as low as 1 ppb, using a very simple SERS substrate, which is made from silver nanoparticles chemically deposited on silicon surface.


Nanoscale ◽  
2015 ◽  
Vol 7 (45) ◽  
pp. 18992-18997 ◽  
Author(s):  
Pengcheng Dai ◽  
Yanming Xue ◽  
Xuebin Wang ◽  
Qunhong Weng ◽  
Chao Zhang ◽  
...  

We designed a novel pollutant capturing surface enhanced Raman spectroscopy (SERS) substrate based on boron nitride microfibers uniformly decorated with silver nanoparticles.


2019 ◽  
Vol 10 ◽  
pp. 1270-1279 ◽  
Author(s):  
Yongxin Lu ◽  
Yan Luo ◽  
Zehao Lin ◽  
Jianguo Huang

A highly active surface-enhanced Raman scattering (SERS) substrate was developed by facile deposition of silver nanoparticles onto cellulose fibers of ordinary laboratory filter paper. This was achieved by means of the silver mirror reaction in a manner to control both the size of the silver nanoparticles and the silver density of the substrate. This paper-based substrate is composed of a particle-on-fiber structure with the unique three-dimensional network morphology of the cellulose matrix. For such a SERS substrate with optimized size of the silver nanoparticles (ca. 70 nm) and loading density of silver (17.28 wt %), a remarkable detection limit down to the sub-attomolar (1 × 10−16 M) level and an enhancement factor of 3 × 106 were achieved by using Rhodamine 6G as the analyte. Moreover, this substrate was applied to monitor the molecular recognition through multiple hydrogen bonds in between nucleosides of adenosine and thymidine. This low-cost, highly sensitive, and biocompatible paper-based SERS substrate holds considerable potentials for the detection and analyses of chemical and biomolecular species.


Author(s):  
Scott G. Harroun ◽  
Yaoting Zhang ◽  
Tzu-Heng Chen ◽  
Huan-Tsung Chang ◽  
Alexis Vallée-Bélisle

For simulation of SERS on silver nanoparticles, Ag2O can provide a more accurate result than standard model surfaces such as Ag+, Ag, Ag4+ and Ag4.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 587
Author(s):  
Zirui Wang ◽  
Yanyan Huo ◽  
Tingyin Ning ◽  
Runcheng Liu ◽  
Zhipeng Zha ◽  
...  

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10−10 and 10−8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.


Sign in / Sign up

Export Citation Format

Share Document