scholarly journals Effect of Seed Priming on Early Development of Sorghum (Sorghum bicolor L. Moench) and Striga hermonthica (Del.) Benth

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hussien M. Daffalla ◽  
Mohammed Mahgoub Hassan ◽  
Magdoleen G. Osman ◽  
Amani Hamad Eltayeb ◽  
Yassin Ibrahim Dagash ◽  
...  

Striga hermonthica is an obligate, root parasite, that limits cereal production in sub-Saharan Africa. Successful control depends on eliminating its seed reserves in soil, thereby preventing parasitism. Two experiments were conducted to evaluate the effects of salinity on germination traits and seedling growth of sorghum (cultivar Wad Ahmed) and S. hermonthica. The experiments were conducted in a factorial arrangement on the basis of completely randomized design (CRD) with 4 replications. In the first experiment, sorghum height, leaf area, and shoot and root dry weights were examined. The results displayed that, with increasing salinity level, leaf area and dry biomass were increased, while the height was decreased. In the second experiment, Striga germination and haustorium initiation percentages were examined. Among all salts, C2H4O2·NH3 inhibited Striga germination (0–15%) during conditioning or (0–25%) at germination compared to the control (75%). However, salt MgSO4·7H2O improved germination during conditioning up to 70%, while during germination CH3COONa·3H2O recorded 65% germination. Regarding haustoria initiation, results showed that C2H4O2·NH3 at all concentrations inhibits haustorium formation by 100%, while CH3COONa·3H2O at 10 µM improved haustorium formation up to 64% but still below the control (70%). Osmotic potential may significantly affect germination and radicle elongation of the parasitic weed.

Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 485
Author(s):  
Nnanna N. Unachukwu ◽  
Abebe Menkir ◽  
Adekemi Stanley ◽  
Ebenezer O. Farombi ◽  
Melaku Gedil

Strigahermonthica (Del.) Benth is a parasitic weed that devastates cereals in Sub-Saharan Africa. Several control measures have been proposed for the parasite, of these, host plant resistance is considered the most cost-effective for poor farmers. Some tolerant/resistant lines have been developed and these lines display tolerance/resistance mechanisms to the parasite. A series of studies was done to investigate some of the mechanisms through which a resistant (TZISTR1108) and a susceptible (5057) maize line responds to S. hermonthica infestation, as well as the effects of parasitism on these lines. In this study, TZISTR1108 stimulated the germination and attachment of fewer S. hermonthica plants than 5057, both in the laboratory and on the field. In TZISTR1108, the growth of the S. hermonthica plants, that successfully attached, was slowed. When compared to the un-infested plants, the infested resistant plants showed fewer effects of parasitism than the infested susceptible plants. The infested TZISTR1108 plants were more vigorous, taller and resembled their un-infected counterparts. There were substantial reductions in the stomatal conductance and nitrogen content of the 5057 upon infestation. The resistant inbred line showed multiple mechanisms of resistance to S. hermonthica infestation. It thrives better than the susceptible line by reducing the attachment of S. hermonthica and it delays the parasite’s development.


1996 ◽  
Vol 25 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Dana Berner ◽  
Robert Carsky ◽  
Kenton Dashiell ◽  
Jennifer Kling ◽  
Victor Manyong

Striga hermonthica, an obligate root parasite of grasses, Is one of the most severe constraints to cereal production in sub-Saharan Africa. In the recent past, prior to increased production pressure on land, S. hermonthica was controlled in African farming systems by prolonged crop rotations with bush fallow. Because of increasing need for food and concomitant changes in land management practices, however, these fallow rotations are no longer extensively used. Shorter crop rotations and fallow periods have also led to declines in soil fertility which present a very serious threat to African food production. A sustainable solution will be an integrated approach that simultaneously addresses both of these major problems. An integrated programme that replaces traditional bush fallow rotation with non-host nitrogen-fixing legume rotations, using cultivars selected for efficacy in germinating S. hermonthica seeds, is outlined. The programme includes use of S. hermonthlca-free planting material, biological control, cultural control to enhance biological suppressiveness, host-plant resistance, and host-seed treatments.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Vimbayi Dhliwayo ◽  
Edmore Gasura ◽  
Cacious Stanford Nyakurwa ◽  
Stanford Mabasa ◽  
Arnold Bray Mashingaidze ◽  
...  

Parasitic weeds belonging to the Orobanchaceae family are a menace in Sub-Saharan African (SSA). Specifically, the two witchweeds from the genus Striga, S. hermonthica and S. asiatica, are jointly responsible for land abandonments and cereal yield reductions in the SSA. Factorial experiments involving fourteen maize genotypes and two levels of Striga asiatica infestation (infested and noninfested) were conducted under pot and laboratory experiments at the Department of Plant Production Sciences and Technologies, University of Zimbabwe, during the 2014/2015 season. A 14 × 2 factorial pot experiment was arranged in a 7 × 4 α-lattice design replicated four times, whereas the laboratory agar gel was arranged in a complete randomized design with four replications. Results revealed significant differences ( p  < 0.05) for S. asiatica and genotype main effects for the recorded traits. S. asiatica-infested genotypes had lower biomasses than noninfested ones. However, the University of Zimbabwe bred hybrids such as Ax31, Ax28, Ax7, and Ax32 had similar plant heights and stem, leaf, and cob biomass across the two Striga levels unlike the local checks, particularly SC513, SC537, and SC637, under Striga infestation. Moreover, these genotypes also had the least Striga germination percentage and furthest germination distance indicating that they are resistant/tolerant to Striga asiatica. The University of Zimbabwe bred hybrids, using Striga hermonthica resistance from the International Institute of Tropical Agriculture, exhibited resistance/tolerance to Striga asiatica compared to local checks. Therefore, these varieties could offer a better and viable Striga spp. control option to farmers in both S. hermonthica and S. asiatica endemic areas.


2013 ◽  
Vol 2 (2) ◽  
pp. 99 ◽  
Author(s):  
Evans Atuti Atera ◽  
Takashige Ishii ◽  
John C. Onyango ◽  
Kazuyuki Itoh ◽  
Tetsushi Azuma

<p><em>Striga</em> spp. is considered to be the greatest biological constraint to food production in sub-Saharan Africa, a more serious problem than insects, birds and plant diseases. They are among the most specialized root-parasitic plants inflicting serious injury to their host depriving them water, minerals and photosynthate. The greatest diversity of <em>Striga </em>spp. occurs in grassland. However, <em>Striga hermonthica</em> mainly occurs in farmland infecting grasses. The parasite devastating effect is accomplished prior to its emergence from the soil. It may cause yield losses in cereals ranging from 15% under favourable conditions to 100% where several stress factors are involved, thereby affecting the livelihood of millions of resource-poor farmers. Piecemeal approach to address one aspect of <em>Striga</em> problem at a time has been a setback in technology transfer to producers. Future <em>Striga</em> control programs should not be conducted separately, but should rather be conducted in an integrated approach that combines research talents of various institutions. This will facilitate collaborative research and achieve qualitative interaction between stakeholders, which can easily produce reliable technologies that are practical and available to farmers. <em>Striga</em> being a pervasive pest, time is of essence in controlling it. There is an urgent need for the establishment of policies to promote, implement, and ensure a long-term sustainable <em>Striga</em> control program.</p>


Weed Science ◽  
2021 ◽  
pp. 1-19
Author(s):  
Olivier Dayou ◽  
Willy Kibet ◽  
Patroba Ojola ◽  
Prakash Irappa Gangashetty ◽  
Susann Wicke ◽  
...  

Abstract The parasitic plant purple witchweed [Striga hermonthica (Del.) Benth.] poses a serious threat to cereal production in sub-Saharan Africa. Under natural infestation, the wild pearl millet [Pennisetum glaucum (L.) R. Br.] line 29Aw demonstrates resistance against the parasite, but the mechanism of its resistance is unknown. Striga resistance can be due to: (i) low induction of Striga germination (pre-attachment resistance) or (ii) inhibition of parasite attachment and development (post-attachment resistance). Germination bioassays and root chamber (rhizotron) resistance screening assays were used to determine the extent of pre- and post-attachment Striga resistance in 29Aw compared with the Striga-susceptible SOSAT-C88-P10 variety. Regarding pre-attachment resistance, 29Aw stimulated 10-fold less Striga seed germination at a maximum germination distance of 7.96 ± 2.75 mm from the host root compared with 35.94 ± 2.88 mm in SOSAT-C88-P10. Post-attachment resistance revealed 10 to 19-fold fewer, 2.5-fold shorter, and 28-fold less Striga seedling biomass growing on 29Aw compared to SOSAT-C88-P10. Microscopic analysis showed that Striga penetration in 29Aw was blocked at endodermis and cortex levels. Post-attachment resistance in 29Aw was further supported by fewer (22%) Striga-host vascular connections in 29Aw compared to 79% in SOSAT-C88-P10. Together, these findings demonstrate that 29Aw harbors both pre- and post-attachment resistance mechanisms against S. hermonthica.


2005 ◽  
Vol 95 (11) ◽  
pp. 1294-1300 ◽  
Author(s):  
R. A. Vasey ◽  
J. D. Scholes ◽  
M. C. Press

Striga hermonthica is a parasitic weed endemic to sub-Saharan Africa. It most commonly parasitizes sorghum, maize, pearl millet, and upland rice, lowering yields and affecting the welfare of over 100 million people, principally subsistence farmers. Cereal crops with complete resistance to this pathogen have not been reported. In southern and eastern Africa, where Striga spp. are endemic, 5.6 million ha of wheat are cultivated annually. Despite this, there are only isolated field reports of wheat infected with Striga spp. It is not clear whether this is due to resistance in this cereal or to environmental factors. In this article, we examined the ability of root exudates from five cultivars of wheat (Chablis, Cadenza, Hereward, Riband, and Brigadier) to trigger germination of S. hermonthica seed. A study of the development of S. hermonthica on two cultivars of wheat (Hereward and Chablis) and on a range of ancestral relatives of wheat (Triticum and Aegilops spp.) then was conducted. Last, the effect of Striga spp. on host growth and yield was examined using wheat cv. Chablis and compared with that of a highly susceptible sorghum cultivar (CSH-1). Wheat was able to support the germination, attachment, and subsequent development of Striga spp. All wheat cultivars and ancestral species of modern wheat (Triticum and Aegilops spp.) were susceptible to S. hermonthica. In addition, in wheat, infection severely lowered plant height (-24%) and biomass accumulation (-33%); a small parasite biomass elicited a large host response. In conclusion, wheat is highly susceptible to S. hermonthica and, in light of global climate change, this may have implications for wheat-producing areas of Africa.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1168 ◽  
Author(s):  
Baffour Badu-Apraku ◽  
Samuel Adewale ◽  
Agre Paterne ◽  
Melaku Gedil ◽  
Robert Asiedu

Striga hermonthica parasitism is a major constraint to maize production in sub-Saharan Africa with yield losses reaching 100% under severe infestation. The application of marker-assisted selection is highly promising for accelerating breeding for Striga resistance/tolerance in maize but requires the identification of quantitative trait loci (QTLs) linked to Striga resistance/tolerance traits. In the present study, 194 F2:3 families of TZEEI 79 × TZdEEI 11 were screened at two Striga-endemic locations in Nigeria, to identify QTLs associated with S. hermonthica resistance/tolerance and underlying putative candidate genes. A genetic map was constructed using 1139 filtered DArTseq markers distributed across the 10 maize chromosomes, covering 2016 cM, with mean genetic distance of 1.70 cM. Twelve minor and major QTLs were identified for four Striga resistance/tolerance adaptive traits, explaining 19.4%, 34.9%, 14.2% and 3.2% of observed phenotypic variation for grain yield, ears per plant, Striga damage and emerged Striga plants, respectively. The QTLs were found to be linked to candidate genes which may be associated with plant defense mechanisms in S. hermonthica infested environments. The results of this study provide insights into the genetic architecture of S. hermonthica resistance/tolerance indicator traits which could be employed for marker-assisted selection to accelerate efficient transfer host plant resistance genes to susceptible genotypes.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 891
Author(s):  
Solomon A. Oyekale ◽  
Baffour Badu-Apraku ◽  
Victor O. Adetimirin ◽  
Nnanna Unachukwu ◽  
Melaku Gedil

A hemiparasitic plant, Striga hermonthica (Del.) Benth and soil nitrogen stress are the key constraints to maize (Zea mays L.) productivity in sub-Saharan Africa, where commonly cultivated maize is the normal endosperm type that is deficient in provitamin A, tryptophan and lysine (PVATL). Seventy-six extra-early maize inbreds with provitamin A, tryptophan, and lysine qualities (TZEEIORQ) were developed to address these constraints, and four checks were assessed under Striga, low and high nitrogen conditions at three locations in Nigeria. The inbreds were further genotyped with two beta-carotene hydroxylase 1 (crtRB1) markers, and their seeds were quantified for provitamin A content. Significant (P < 0.01) genetic variations were observed for grain yield and other agronomic attributes of the inbreds under varying environmental conditions. Levels of PVATL for the inbreds ranged from 2.21–10.95 µg g−1, 0.04–0.08%, and 0.19–0.39%, respectively. Beta-carotene marker, crtRB1-3′TE, was polymorphic and grouped the inbreds into two. The marker was effective in identifying inbreds with moderate provitamin A content. Inbreds TZEEIORQ 5, TZEEIORQ 52, and TZEEIORQ 55 exhibited resistance to Striga, tolerance to nitrogen stress with moderate levels of PVATL and could be invaluable sources of favorable alleles for breeding nutritionally improved maize varieties with resistance/tolerance to Striga and soil nitrogen stress.


Sign in / Sign up

Export Citation Format

Share Document