scholarly journals Synthesis and Physicochemical Characterization of MesoporousSiO2Nanoparticles

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Dharani Das ◽  
Yong Yang ◽  
Julie S. O’Brien ◽  
Dalibor Breznan ◽  
Surendra Nimesh ◽  
...  

There exists a knowledge gap in understanding potential toxicity of mesoporous silica nanoparticles. A critical step in assessing toxicity of these particles is to have a wide size range with different chemistries and physicochemical properties. There are several challenges when synthesizing mesoporous silica nanoparticles over a wide range of sizes including (1) nonuniform synthesis protocols using the same starting materials, (2) the low material yield in a single batch synthesis (especially for particles below 60–70 nm), and (3) morphological instability during surfactant removal process and surface modifications. In this study, we synthesized a library of mesoporous silica nanoparticles with approximate particle sizes of 25, 70, 100, 170, and 600 nm. Surfaces of the silica nanoparticles were modified with hydrophilic-CH2–(CH2)2–COOH and relatively hydrophobic-CH2–(CH2)10–COOH functional groups. All silica nanoparticles were analysed for morphology, surface functionality, surface area/pore volume, surface organic content, and dispersion characteristics in liquid media. Our analysis revealed the synthesis of a spectrum of monodisperse bare and surface modified mesoporous silica nanoparticles with a narrow particle size distribution and devoid of cocontaminants critical for toxicity studies. Complete physicochemical characterization of these synthetic mesoporous silica nanoparticles will permit systematic toxicology studies for investigation of structure-activity relationships.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3337
Author(s):  
Sara Hooshmand ◽  
Sahar Mollazadeh ◽  
Negar Akrami ◽  
Mehrnoosh Ghanad ◽  
Ahmed El-Fiqi ◽  
...  

Exploring new therapies for managing skin wounds is under progress and, in this regard, mesoporous silica nanoparticles (MSNs) and mesoporous bioactive glasses (MBGs) offer great opportunities in treating acute, chronic, and malignant wounds. In general, therapeutic effectiveness of both MSNs and MBGs in different formulations (fine powder, fibers, composites etc.) has been proved over all the four stages of normal wound healing including hemostasis, inflammation, proliferation, and remodeling. The main merits of these porous substances can be summarized as their excellent biocompatibility and the ability of loading and delivering a wide range of both hydrophobic and hydrophilic bioactive molecules and chemicals. In addition, doping with inorganic elements (e.g., Cu, Ga, and Ta) into MSNs and MBGs structure is a feasible and practical approach to prepare customized materials for improved skin regeneration. Nowadays, MSNs and MBGs could be utilized in the concept of targeted therapy of skin malignancies (e.g., melanoma) by grafting of specific ligands. Since potential effects of various parameters including the chemical composition, particle size/morphology, textural properties, and surface chemistry should be comprehensively determined via cellular in vitro and in vivo assays, it seems still too early to draw a conclusion on ultimate efficacy of MSNs and MBGs in skin regeneration. In this regard, there are some concerns over the final fate of MSNs and MBGs in the wound site plus optimal dosages for achieving the best outcomes that deserve careful investigation in the future.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 629
Author(s):  
Aniello Costantini ◽  
Valeria Califano

Lipases are ubiquitous enzymes whose physiological role is the hydrolysis of triacylglycerol into fatty acids. They are the most studied and industrially interesting enzymes, thanks to their versatility to promote a plethora of reactions on a wide range of substrates. In fact, depending on the reaction conditions, they can also catalyze synthesis reactions, such as esterification, acidolysis and transesterification. The latter is particularly important for biodiesel production. Biodiesel can be produced from animal fats or vegetable oils and is considered as a biodegradable, non-toxic and renewable energy source. The use of lipases as industrial catalysts is subordinated to their immobilization on insoluble supports, to allow multiple uses and use in continuous processes, but also to stabilize the enzyme, intrinsically prone to denaturation with consequent loss of activity. Among the materials that can be used for lipase immobilization, mesoporous silica nanoparticles represent a good choice due to the combination of thermal and mechanical stability with controlled textural characteristics. Moreover, the presence of abundant surface hydroxyl groups allows for easy chemical surface functionalization. This latter aspect has the main importance since lipases have a high affinity with hydrophobic supports. The objective of this work is to provide an overview of the recent progress of lipase immobilization in mesoporous silica nanoparticles with a focus on biodiesel production.


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 478 ◽  
Author(s):  
Cristina Zea ◽  
Jenifer Alcántara ◽  
Rosa Barranco-García ◽  
Manuel Morcillo ◽  
Daniel de la Fuente

2018 ◽  
Vol 13 (6) ◽  
pp. 592-599 ◽  
Author(s):  
Anna Slita ◽  
Anna Egorova ◽  
Eudald Casals ◽  
Anton Kiselev ◽  
Jessica M. Rosenholm

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 250 ◽  
Author(s):  
Alessandra Nigro ◽  
Michele Pellegrino ◽  
Marianna Greco ◽  
Alessandra Comandè ◽  
Diego Sisci ◽  
...  

Advances in nanotechnology for drug delivery are fostering significant progress in medicine and diagnostics. The multidisciplinary nature of the nanotechnology field encouraged the development of innovative strategies and materials to treat a wide range of diseases in a highly specific way, which allows reducing the drug dosage and, consequently, improving the patient’s compliance. Due to their good biocompatibility, easy synthesis, and high versatility, inorganic frameworks represent a valid tool to achieve this aim. In this context, Mesoporous Silica Nanoparticles (MSNs) are emerging in the biomedical field. For their ordered porosity and high functionalizable surface, achievable with an inexpensive synthesis process and being non-hazardous to biological tissues, MSNs offer ideal solutions to host, protect, and transport drugs to specific target sites. Extensive literature exists on the use of MSNs as targeted vehicles for systemic (chemo) therapy and for imaging/diagnostic purposes. However, the aim of this review is to give an overview of the last updates on the potential applications of the MSNs for Topical Drug Delivery (TDD) and as drug delivery systems into the brain, discussing their performances and advantages in dealing with these intriguing biological barriers.


2017 ◽  
Vol 1142 ◽  
pp. 220-224 ◽  
Author(s):  
Wan Xia Wang ◽  
Yu Wang ◽  
Hua Meng Gong ◽  
Hong Hao Sun ◽  
Ming Xing Liu

The purpose of this article is to synthesize the thiol-and carboxyl-bifunctionalized mesoporous silica nanoparticles (CMS-SH-COOH). CMS-SH-COOH was successfully synthesized by co-condensation and post-grafting methods. Moreover, the particle size and structural properties of CMS-SH-COOH were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR). The obtained results indicated that the CMS-SH-COOH presented a uniform spherical shape with a wormhole arrangement of the mesopores and a relatively narrow paticle distribition. Therefore, the CMS-SH-COOH might be a great potential carrier for the drug delivery system in the future.


RSC Advances ◽  
2017 ◽  
Vol 7 (26) ◽  
pp. 15625-15631 ◽  
Author(s):  
Yan Chen ◽  
Xiongjie Zhang ◽  
Beifu Wang ◽  
Mengjiao Lv ◽  
Yingying Zhu ◽  
...  

A novel shape-stabilized phase change material, prepared by immobilizing stearic acid onto tannic-acid-templated mesoporous silica nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document