scholarly journals Research of Electrosurgical Ablation with Antiadhesive Functionalization on Thermal and Histopathological Effects of Brain Tissues In Vivo

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Wen-Tien Hsiao ◽  
Chun-Ming Kung ◽  
Jan-Show Chu ◽  
Keng-Liang Ou ◽  
Pei-Wen Peng

Thermal injury and tissue sticking are two major concerns in the electrosurgery. In the present study, the effect of lateral thermal injury caused by different electrosurgical electrodes on wound healing was investigated. An electrosurgical unit equipped with untreated (SS) and titanium oxide layer-coated (TiO2-coated) stainless steel needle-type electrodes was used to create lesions on the rat brain tissue. TiO2layers were produced by radiofrequency plasma and magnetron sputtering in the form of amorphous (TO-SS-1), anatase (TO-SS-2), and rutile (TO-SS-3) phase. Animals were sacrificed for evaluations at 0, 2, 7, and 28 days postoperatively. TO-SS-3 electrodes generated lower levels of sticking tissue, and the thermographs showed that the recorded highest temperature in brain tissue from the TO-SS-3 electrode was significantly lower than in the SS electrode. The total injury area of brain tissue caused by TO-SS-1 and TO-SS-3 electrodes was significantly lower than that caused by SS electrodes at each time point. The results of the present study reveal that the plating of electrodes with a TiO2film with rutile phases is an efficient method for improving the performance of electrosurgical units and should benefit wound healing.

2020 ◽  
Vol 24 (10) ◽  
pp. 3485-3500 ◽  
Author(s):  
C. Herrera-Vizcaíno ◽  
S. Al-Maawi ◽  
R. Sader ◽  
C. J. Kirkpatrick ◽  
J. Choukroun ◽  
...  

Abstract Background The present study evaluated the cellular tissue reaction of two equine-derived collagen hemostatic sponges (E-CHS), which differed in thickness after pressing, over 30 days in vivo. The inflammatory response during physiological wound healing in sham-operated animals was used as control group. Material and methods First, the E-CHS was pressed by applying constant pressure (6.47 ± 0.85 N) for 2 min using a sterile stainless-steel cylinder until the material was uniformly flattened. Consequently, the original (E-CHS), the pressed (P-E-CHS), as well as the control group (CG; sham operation) were studied independently. The 3 groups were evaluated in vivo after subcutaneous implantation in Wistar rats during 3, 15, and 30 days. Histochemical and immunohistochemical methods provided observations of biomaterial degradation rate, cellular inflammatory response, and vascularization pattern. A derivative of human blood known as platelet-rich fibrin (PRF) was used as an ex vivo model to simulate the initial biomaterial-cell interaction. Segments of E-CHS and P-E-CHS were cultivated for 3 and 6 days with PRF, and the release of pro-inflammatory proteins was measured using ELISA. PRF cultivated alone was used as a control group. Results At day 3, the CG induced a statistically significant higher presence of monocytes/macrophages (CD68+), pro-inflammatory macrophages (M1; CCR7+), and pro-wound healing macrophages (M2; CD206+) compared to E-CHS and P-E-CHS. At the same time point, P-E-CHS induced a statistically significant higher presence of CD68+ cells compared to E-CHS. After 15 days, E-CHS was invaded by cells and vessels and showed a faster disintegration rate compared to P-E-CHS. On the contrary, cells and vessels were located only in the outer region of P-E-CHS and the biomaterial did not lose its structure and accordingly did not undergo disintegration. The experimental groups induced similar inflammatory reaction primarily with positive pro-inflammatory CD68+/CCR7+ macrophages and a low presence of multinucleated giant cells (MNGCs). At this time point, significantly lower CD68+/CCR7+ macrophages and no MNGCs were detected within the CG when compared to the experimental groups (P < 0.05). After 30 days, E-CHS and P-E-CHS were fully degraded. All groups showed similar inflammatory reaction shifted to a higher presence CD206+ macrophages. A low number of CCR7+ MNGCs were still observable in the implantation bed of both experimental groups. In the ex vivo model, the cells and fibrin from PRF penetrated E-CHS. However, in the case of P-E-CHS, the cells and fibrin stayed on the surface and did not penetrate towards materials central regions. The cultivation of P-E-CHS with PRF induced a statically significant higher release of pro-inflammatory proteins compared to the CG and E-CHS after 3 days. Conclusion Altering the original presentation of a hemostatic sponge biomaterial by pressing modified the initial biomaterial-cell interaction, delayed the early biomaterial’s degradation rate, and altered the vascularization pattern. A pressed biomaterial seems to induce a higher inflammatory reaction at early time points. However, altering the biomaterial did not modify the polarization pattern of macrophages compared to physiologic wound healing. The ex vivo model using PRF was shown to be an effective model to simulate the initial biomaterial-cell interaction in vivo. Clinical relevance A pressed hemostatic sponge could be applied for guided tissue regeneration and guided bone regeneration. In that sense, within the limitations of this study, the results show that the same biomaterial may have two specific clinical indications.


2019 ◽  
Vol 18 (1) ◽  
pp. 06-16
Author(s):  
R. Seghiri ◽  
A. Essamri

Spirulina is a microalga used in traditional folk medicine in Morocco for the treatment of various health disorders. The wound healing activity of Moroccan Spirulina is unknown. In the current study, aqueous extracts of Spirulina platensis were investigated for acute toxicity and wound healing activity in Swiss Albino mice and White New Zealand rabbits, respectively. The LD50 (amount of substance required to kill 50% of the test population) of the microalga was greater than 5,000 mg/kg. Healing after application of the same amount of ointment on differently induced (mechanical, chemical, and thermal) wounds was about the same, over five weeks. Aqueous extract had remarkable healing activity on rabbits’ skin, possessing significantly greater healing effect for mechanical and chemical burns than controls. Moreover, the hair growing time was faster in treated groups; Spirulina-treated groups did not show any contamination with microbes compared to others. This study affirms that Spirulina platensis can be considered as a potential therapeutic agent for wound healing not only as a complementary medicine but also in conventional medicine.


Sign in / Sign up

Export Citation Format

Share Document