scholarly journals Exploration on Bioflocculation ofNannochloropsis oculataUsing Response Surface Methodology for Biodiesel Production

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Duraiarasan Surendhiran ◽  
Mani Vijay

Harvesting of algal biomass in biodiesel production involves high energy input and cost incurred process. In order to overcome these problems, bioflocculation process was employed and the efficiency of this process was further improved by the addition of a cationic inducer. In this work marineBacillus subtiliswas used for bioflocculation ofNannochloropsis oculataand ZnCl2as cationic inducer. This study worked under the principle of divalent cationic bridging (DCB) theory. Under temperature stress and high pH, the bacterium produced exopolysaccharide that bound with microalgaNannochloropsis oculataand flocculated them. A maximum efficiency of 95.43% was observed with the optimised RSM parameters—temperature 30.78°C, pH 10.8, flocculation time 6.7 h, bioflocculant size 0.38 mL, and cationic inducer concentration 0.035 mM. The present investigation focused on the cost effective harvesting of microalga on a larger scale for biodiesel production than using toxic, ecofriendly chemical flocculants.

2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2013 ◽  
Vol 291-294 ◽  
pp. 1573-1576
Author(s):  
Yuan Sheng Huang ◽  
Lu Tong Li

Based on the input-output theory, the paper using the comparable price energy input-output table,quantitatively estimates the implicit carbon emissions of each industrial department,and analyzes the growth of the implicit carbon emissions of the resident consumption through the structure decomposition.Conclusion indicates:From 1992 to 1997, the mean of the implicit carbon emissions of each industrial department in Xinjiang had been rising; From 1997 to 2007, the mean of the implicit carbon emissions of each industrial department had been declining;The implicit carbon emissions of Hydropower industry, the fire power and other seven similar industrial department were higher than that of each industrial department so that Xinjiang should strengthen monitoring on the high energy consumption.The implicit carbon emissions of the resident consumption was still in the trend of ceaseless growth and all of that states clearly that the economic grows at the cost of the increase of the greenhouse gas emissions.Xinjiang should introduce foreign advanced production technology,further optimizing the structure of the resident consumption.


2022 ◽  
Author(s):  
Xiaohong Ding ◽  
Ruilai Liu ◽  
Jiapeng Hu ◽  
Jingyun Zhao ◽  
Jinjin Wu ◽  
...  

The cost-effective synthesis of flexible energy storage devices with high energy and power densities is a challenge in wearable electronics. Here, we report a facile, efficient, and scalable approach for...


Author(s):  
. Shivangi ◽  
Rohit Raina ◽  
Manish Mishra ◽  
Shelly Sehgal

Background: Energy production and consumption ratio form the hallmark of the economic prosperity of a country. To keep up with the demand and supply of energy a major switch to biofuels is reasoned but the cost associated with production and the choice of raw material forms two major economical and ethical concerns, especially in the under-developed and developing countries where the food is not sufficiently available to everyone. In this scenario, the use of food sources as raw material becomes unjustified. Purpose: To address these issues, here we made an effort to obtain bioethanol from a non-edible and easily available resource that requires a modest cost of production i.e., a locally available algal bloom. Also, different methods of pre-treatment were employed and scrutinized for their efficacy. These methods of pre-treatment are very cost-effective and easy to administer. Materials and Methods: The algal biomass was pre-treated separately in three ways viz., freeze-thawing, mechanical disruption and rotten wood treatment. The algal cake left out after extraction of lipid content for biodiesel production was also used as a fourth sample. After pre-treatment, the supernatant was collected and estimated for reducing sugar content and allowed to ferment using Saccharomyces cerevisiae. A distillate was obtained and checked for ethanol percentage through gas chromatography. Results: The mechanically disrupted sample yielded the highest percentage of ethanol followed by algal cake, freeze-thawing and rotten wood treatment. Conclusion: Given present food scarcity, the non-edible algae could be a better alternative for bioethanol production as compared to the use of conventional food crops. Through this study, we have found that a better yield can be achieved if the algal biomass is pre-treated via mechanical disruption.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nazifa Rafa ◽  
Shams Forruque Ahmed ◽  
Irfan Anjum Badruddin ◽  
M. Mofijur ◽  
Sarfaraz Kamangar

Third-generation biofuel produced from microalgae is a viable solution to global energy insecurity and climate change. Despite an annual current global algal biomass production of 38 million litres, commercialization confronts significant economic challenges. However, cost minimization strategies, particularly for microalgae cultivation, have largely been excluded from recent studies. Therefore, this review provides essential insights into the technologies and economics of cost minimization strategies for large-scale applications. Cultivation of microalgae through aquafarming, in wastewater, or for biogas upgrading, and co-production of value-added products (VAPs) such as photo-bioreactors, protein, astaxanthin, and exopolysaccharides can drastically reduce biodiesel production costs. For instance, the co-production of photo-bioreactors and astaxanthin can reduce the cost of biodiesel production from $3.90 to $0.54 per litre. Though many technical challenges need to be addressed, the economic analysis reveals that incorporating such cost-effective strategies can make the biorefinery concept feasible and profitable. The cost of producing microalgal biodiesel can be lowered to $0.73kg−1 dry weight when cultivated in wastewater or $0.54L−1 when co-produced with VAPs. Most importantly, access to co-product markets with higher VAPs needs to be encouraged as the global market for microalgae-based VAPs is estimated to rise to $53.43 billion in 2026. Therefore, policies that incentivize research and development, as well as the production and consumption of microalgae-based biodiesel, are important to reduce the large gap in production cost that persists between biodiesel and petroleum diesel.


Author(s):  
Igor Kupchuk

Feed make up a large part of the cost for livestock production and determine its quality. A very important technological operation with high energy costs is the grinding of feed grain (wheat, barley, peas, corn, etc.). Therefore, research on the development of effective technologies and cost-effective equipment for grinding is relevant and of practical value. In the laboratory of the theory of mechanisms and machines of the department of general technical disciplines and labor protection of Vinnitsa National Agrarian University, a vibratory disk crusher was designed to increase the level of technical support for the livestock industry. The crusher uses a more efficient method of grinding feed grain - a combination of impact and cutting, in contrast to a hammer mill that grinds with a free impact of hammers. The research results of grinding corn grain into feed by a vibratory disk crusher are presented in the article. An experimental prototype of the developed machine was used as an object of research. To register the input and output parameters of grinding, we used the material and technical base of the department of technological processes and equipment of processing and food industries. In order to comply with the zootechnical requirements for the degree of grinding of grain into feed, the dispersion of the obtained product was also controlled. The sizes of the fractions were determined by mechanical separation on a sieve analyzer. Data processing was carried out in the Microsoft Excel software package. Thus, graphs were obtained and rational parameters of the vibratory disk crusher were determined. This was done by analyzing the performance for the crusher depending on the rotor angular velocity, the sieve perforation diameter and the grain moisture content.


Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


Phlebologie ◽  
2007 ◽  
Vol 36 (06) ◽  
pp. 309-312 ◽  
Author(s):  
T. Schulz ◽  
M. Jünger ◽  
M. Hahn

Summary Objective: The goal of the study was to assess the effectiveness and patient tolerability of single-session, sonographically guided, transcatheter foam sclerotherapy and to evaluate its economic impact. Patients, methods: We treated 20 patients with a total of 22 varicoses of the great saphenous vein (GSV) in Hach stage III-IV, clinical stage C2-C5 and a mean GSV diameter of 9 mm (range: 7 to 13 mm). We used 10 ml 3% Aethoxysklerol®. Additional varicoses of the auxiliary veins of the GSV were sclerosed immediately afterwards. Results: The occlusion rate in the treated GSVs was 100% one week after therapy as demonstrated with duplex sonography. The cost of the procedure was 207.91 E including follow-up visit, with an average loss of working time of 0.6 days. After one year one patient showed clinical signs of recurrent varicosis in the GSV; duplex sonography showed reflux in the region of the saphenofemoral junction in a total of seven patients (32% of the treated GSVs). Conclusion: Transcatheter foam sclerotherapy of the GSV is a cost-effective, safe method of treating varicoses of GSV and broadens the spectrum of therapeutic options. Relapses can be re-treated inexpensively with sclerotherapy.


2019 ◽  
Vol 2 (4) ◽  
pp. 260-266
Author(s):  
Haru Purnomo Ipung ◽  
Amin Soetomo

This research proposed a model to assist the design of the associated data architecture and data analytic to support talent forecast in the current accelerating changes in economy, industry and business change due to the accelerating pace of technological change. The emerging and re-emerging economy model were available, such as Industrial revolution 4.0, platform economy, sharing economy and token economy. Those were driven by new business model and technology innovation. An increase capability of technology to automate more jobs will cause a shift in talent pool and workforce. New business model emerge as the availabilityand the cost effective emerging technology, and as a result of emerging or re-emerging economic models. Both, new business model and technology innovation, create new jobs and works that have not been existed decades ago. The future workers will be faced by jobs that may not exist today. A dynamics model of inter-correlation of economy, industry, business model and talent forecast were proposed. A collection of literature review were conducted to initially validate the model.


Sign in / Sign up

Export Citation Format

Share Document