generation biofuel
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 67)

H-INDEX

25
(FIVE YEARS 6)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122827
Author(s):  
S. Thanigaivel ◽  
A.K. Priya ◽  
Kingshuk Dutta ◽  
Saravanan Rajendran ◽  
Yasser Vasseghian

2022 ◽  
Vol 154 ◽  
pp. 111829
Author(s):  
B. Bharathiraja ◽  
J. Iyyappan ◽  
M. Gopinath ◽  
J. Jayamuthunagai ◽  
R. PraveenKumar

2021 ◽  
Vol 150 ◽  
pp. 111464
Author(s):  
Chandrani Debnath ◽  
Tarun Kanti Bandyopadhyay ◽  
Biswanath Bhunia ◽  
Umesh Mishra ◽  
Selvaraju Narayanasamy ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 10866
Author(s):  
Adrianne Beavers ◽  
Marina Koether ◽  
Thomas McElroy ◽  
Sigurdur Greipsson

Soil lead (Pb) contamination is a major environmental and public health risk. Switchgrass (Panicum virgatum), a second-generation biofuel crop, is potentially useful for the long-term phytoremediation and phytoextraction of Pb contaminated soils. We evaluated the efficacy of a coordinated foliar application of plant growth regulators and soil fungicide and a chelator in order to optimize phytoextraction. Plants were grown in soil culture under controlled conditions. First, three exogenous nitric oxide (NO) donors were evaluated at multiple concentrations: (1) S-nitroso-N-acetylpenicillamine (SNAP); (2) sodium nitroprusside (SNP); and (3) S-nitrosoglutathione (GSNO). Second, the effect of SNP (0.5 μM) was examined further with the model chelate EDTA and the soil fungicide propicanazole. Third, a combined foliar application of SNP and gibberellic acid (GA3) was examined with EDTA and propicanazole. The soil application of propiconazole (a broad-spectrum fungicides) reduced AMF colonization and allowed greater Pb phytoextraction. The foliar application of SNP resulted in similar concentrations of Pb (roots and foliage) to plants that were challenged with chelates and soil fungicides. The combined foliar application of SNP and GA3 resulted in significantly greater average Pb concentration (243 mg kg−1) in plant foliage in comparison to control plants (182 mg kg−1) and plants treated with GA3 alone (202 mg kg−1). The combined foliar application of SNP and GA3 resulted in the greatest phytoextraction efficiency and could therefore potentially improve phytoextraction by switchgrass grown in Pb contaminated soils.


2021 ◽  
Vol 11 (19) ◽  
pp. 8851
Author(s):  
Samir Meramo ◽  
Plinio Puello ◽  
Julio Rodríguez

Since the last century, the idea of replacing traditional fossil sources with renewable alternatives has attracted much attention. As a result, auspicious renewable biofuels, such as biohydrogen or bio-oil, have emerged as suitable options. This study provides some knowledge on combining process design, modeling, and exergy analysis as a united framework to support decision making in energy-based projects. The assessment also included a final evaluation, considering sustainability indicators to evaluate process performance. Feedstock selection is crucial for producing bio-oil and hydrogen for process sustainability; this aspect is discussed, considering second-generation sources. Second-generation bio-oil and biohydrogen production are assessed and compared under the proposed framework. Process simulation was performed using ASPEN PLUS. Exergy analysis was developed using data generated in the process simulation stage, containing material and energy balances, thermodynamic properties, chemical reactions, etc. A mathematical formulation for the exergy analysis shows the exergy of utilities, waste, exergy efficiency, and exergy intensity of both processes, based on the same functional unit (1 kg of product). The sustainability evaluation included quantifying side parameters, such as the renewability index, energy efficiency, or global warming potential. The results indicate that pyrolysis obtained the highest resource exergy efficiency (11%), compared to gasification (3%). The exergy intensity shows that more exergy is consumed in the gasification process (4080.21 MJ/kg) than pyrolysis (18.64 MJ/kg). Similar results are obtained for total irreversibility (327.41 vs. 48.75 MJ/kg) and exergy of wastes (51.34 vs. 18.14 MJ/kg).


2021 ◽  
Vol 9 ◽  
Author(s):  
Nazifa Rafa ◽  
Shams Forruque Ahmed ◽  
Irfan Anjum Badruddin ◽  
M. Mofijur ◽  
Sarfaraz Kamangar

Third-generation biofuel produced from microalgae is a viable solution to global energy insecurity and climate change. Despite an annual current global algal biomass production of 38 million litres, commercialization confronts significant economic challenges. However, cost minimization strategies, particularly for microalgae cultivation, have largely been excluded from recent studies. Therefore, this review provides essential insights into the technologies and economics of cost minimization strategies for large-scale applications. Cultivation of microalgae through aquafarming, in wastewater, or for biogas upgrading, and co-production of value-added products (VAPs) such as photo-bioreactors, protein, astaxanthin, and exopolysaccharides can drastically reduce biodiesel production costs. For instance, the co-production of photo-bioreactors and astaxanthin can reduce the cost of biodiesel production from $3.90 to $0.54 per litre. Though many technical challenges need to be addressed, the economic analysis reveals that incorporating such cost-effective strategies can make the biorefinery concept feasible and profitable. The cost of producing microalgal biodiesel can be lowered to $0.73kg−1 dry weight when cultivated in wastewater or $0.54L−1 when co-produced with VAPs. Most importantly, access to co-product markets with higher VAPs needs to be encouraged as the global market for microalgae-based VAPs is estimated to rise to $53.43 billion in 2026. Therefore, policies that incentivize research and development, as well as the production and consumption of microalgae-based biodiesel, are important to reduce the large gap in production cost that persists between biodiesel and petroleum diesel.


2021 ◽  
Vol 147 ◽  
pp. 111257
Author(s):  
C. Janusch ◽  
E.F. Lewin ◽  
M.L. Battaglia ◽  
E. Rezaei-Chiyaneh ◽  
M. Von Cossel

Sign in / Sign up

Export Citation Format

Share Document