scholarly journals Direct Numerical Simulation of Twin Swirling Flow Jets: Effect of Vortex-Vortex Interaction on Turbulence Modification

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wenkai Xu ◽  
Nan Gui ◽  
Liang Ge ◽  
Jie Yan

A direct numerical simulation (DNS) was carried out to study twin swirling jets which are issued from two parallel nozzles at a Reynolds number of Re = 5000 and three swirl levels of S = 0.68, 1.08, and 1.42, respectively. The basic structures of vortex-vortex interaction and temporal evolution are illustrated. The characteristics of axial variation of turbulent fluctuation velocities, in both the near and far field, in comparison to a single swirling jet, are shown to explore the effects of vortex-vortex interaction on turbulence modifications. Moreover, the second order turbulent fluctuations are also shown, by which the modification of turbulence associated with the coherent or correlated turbulent fluctuation and turbulent kinetic energy transport characteristics are clearly indicated. It is found that the twin swirling flow has a fairly strong localized vortex-vortex interaction between a pair of inversely rotated vortices. The location and strength of interaction depend on swirl level greatly. The modification of vortex takes place by transforming large-scale vortices into complex small ones, whereas the modulation of turbulent kinetic energy is continuously augmented by strong vortex modification.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingtuan Yang ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jie Yan ◽  
Jiyuan Tu ◽  
...  

This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.


2014 ◽  
Vol 6 ◽  
pp. 193731 ◽  
Author(s):  
Jie Yan ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jinsen Gao

Two parallel swirling/rotating jets with a distance between them are termed biswirling jets here, which have important and complicated vortex structures different from the single swirling jet due to the negligible vortex-vortex interactions. The visualization of vortex-vortex interaction between the biswirling jets is accomplished by using direct numerical simulation. The evolution of vortex structures of the biswirling jets is found rather complicated. The turbulent kinetic energy and turbulence dissipation in the central convergence region are augmented locally and rather strongly. The modulation of turbulent kinetic energy by jet-jet interaction upon different scales of vortices is dominated by the swirling levels and the distance between the jets. The turbulent kinetic energy upon intermediate and small scale vortices in bijets with not very high swirling level and at a very close distance is smaller than that in single swirling jets, whereas the opposite is true under a far distance, and so forth.


Author(s):  
Atsushi Sakurai ◽  
Koji Matsubara ◽  
Shigenao Maruyama

Importance of turbulence and radiation interaction (TRI) has been investigated in a turbulent channel flow by using direct numerical simulation (DNS) to clarify detailed turbulent flow structure and heat transfer mechanisms. To investigate the effect of correlation functions between gas absorption and temperature fluctuation, the two cases of correlation are tested. Consequently, the TRI effect can be clearly observed when the correlation is positive. This fact provides the evidence that radiative intensity is enhanced by the turbulent fluctuation. The DNS results suggest the significance in the fundamental aspect of TRI. Furthermore, effects of frictional Reynolds number, Reτ, are investigated. Comparing with the case of Reτ = 150, the location of the enhancement peaks of Reτ = 300 shifts toward the walls. It is found that the relative importance of the TRI correspond to the structure of temperature fluctuation intensity originated from the differences of the Reτ.


2001 ◽  
Vol 448 ◽  
pp. 53-80 ◽  
Author(s):  
Z. LIU ◽  
R. J. ADRIAN ◽  
T. J. HANRATTY

Turbulent flow in a rectangular channel is investigated to determine the scale and pattern of the eddies that contribute most to the total turbulent kinetic energy and the Reynolds shear stress. Instantaneous, two-dimensional particle image velocimeter measurements in the streamwise-wall-normal plane at Reynolds numbers Reh = 5378 and 29 935 are used to form two-point spatial correlation functions, from which the proper orthogonal modes are determined. Large-scale motions – having length scales of the order of the channel width and represented by a small set of low-order eigenmodes – contain a large fraction of the kinetic energy of the streamwise velocity component and a small fraction of the kinetic energy of the wall-normal velocities. Surprisingly, the set of large-scale modes that contains half of the total turbulent kinetic energy in the channel, also contains two-thirds to three-quarters of the total Reynolds shear stress in the outer region. Thus, it is the large-scale motions, rather than the main turbulent motions, that dominate turbulent transport in all parts of the channel except the buffer layer. Samples of the large-scale structures associated with the dominant eigenfunctions are found by projecting individual realizations onto the dominant modes. In the streamwise wall-normal plane their patterns often consist of an inclined region of second quadrant vectors separated from an upstream region of fourth quadrant vectors by a stagnation point/shear layer. The inclined Q4/shear layer/Q2 region of the largest motions extends beyond the centreline of the channel and lies under a region of fluid that rotates about the spanwise direction. This pattern is very similar to the signature of a hairpin vortex. Reynolds number similarity of the large structures is demonstrated, approximately, by comparing the two-dimensional correlation coefficients and the eigenvalues of the different modes at the two Reynolds numbers.


2007 ◽  
Vol 594 ◽  
pp. 59-69 ◽  
Author(s):  
MATTHEW J. RINGUETTE ◽  
MINWEI WU ◽  
M. PINO MARTÍN

We demonstrate that data from direct numerical simulation of turbulent boundary layers at Mach 3 exhibit the same large-scale coherent structures that are found in supersonic and subsonic experiments, namely elongated, low-speed features in the logarithmic region and hairpin vortex packets. Contour plots of the streamwise mass flux show very long low-momentum structures in the logarithmic layer. These low-momentum features carry about one-third of the turbulent kinetic energy. Using Taylor's hypothesis, we find that these structures prevail and meander for very long streamwise distances. Structure lengths on the order of 100 boundary layer thicknesses are observed. Length scales obtained from correlations of the streamwise mass flux severely underpredict the extent of these structures, most likely because of their significant meandering in the spanwise direction. A hairpin-packet-finding algorithm is employed to determine the average packet properties, and we find that the Mach 3 packets are similar to those observed at subsonic conditions. A connection between the wall shear stress and hairpin packets is observed. Visualization of the instantaneous turbulence structure shows that groups of hairpin packets are frequently located above the long low-momentum structures. This finding is consistent with the very large-scale motion model of Kim & Adrian (1999).


1997 ◽  
Vol 334 ◽  
pp. 353-379 ◽  
Author(s):  
KRISHNAN MAHESH ◽  
SANJIVA K. LELE ◽  
PARVIZ MOIN

Direct numerical simulation and inviscid linear analysis are used to study the interaction of a normal shock wave with an isotropic turbulent field of vorticity and entropy fluctuations. The role of the upstream entropy fluctuations is emphasized. The upstream correlation between the vorticity and entropy fluctuations is shown to strongly influence the evolution of the turbulence across the shock. Negative upstream correlation between u′ and T′ is seen to enhance the amplification of the turbulence kinetic energy, vorticity and thermodynamic fluctuations across the shock wave. Positive upstream correlation has a suppressing effect. An explanation based on the relative effects of bulk compression and baroclinic torque is proposed, and a scaling law is derived for the evolution of vorticity fluctuations across the shock. The validity of Morkovin's hypothesis across a shock wave is examined. Linear analysis is used to suggest that shock-front oscillation would invalidate the relation between urms and Trms, as expressed by the hypothesis.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Shanti Bhushan ◽  
D. Keith Walters ◽  
S. Muthu ◽  
Crystal L. Pasiliao

Efficacy of several large-scale flow parameters as transition onset markers are evaluated using direct numerical simulation (DNS) of boundary layer bypass transition. Preliminary results identify parameters (k2D/ν) and u′/U∞ to be a potentially reliable transition onset marker, and their critical values show less than 15% variation in the range of Re and turbulence intensity (TI). These parameters can be implemented into general-purpose physics-based Reynolds-averaged Navier–Stokes (RANS) models for engineering applications.


2020 ◽  
pp. 2150083
Author(s):  
Chao Liu ◽  
Hongxun Chen ◽  
Zhengchuan Zhang ◽  
Zheng Ma

In order to reveal the operating characteristics of the pumpjet propulsor, standard [Formula: see text]–[Formula: see text], standard [Formula: see text]–[Formula: see text], RNG [Formula: see text]–[Formula: see text] and SST [Formula: see text]–[Formula: see text] turbulence models were used to conduct steady calculation for the whole flow channels. By comparing the calculation results with experimental data, it was found that the calculation errors were very large in some operating conditions. Therefore, the uncertainty analysis was carried out at all operating conditions of the pumpjet propulsor and the error source was finally determined that it is mainly derived from the model error. Then, the applicability of different turbulence models was analyzed to numerical simulation for the pumpjet propulsor by comparing the internal and external characteristics. It can be seen that the strong turbulent kinetic energy in the guide vane will inevitably cause energy loss, but not necessarily in the impeller. In this area, the increase of turbulent kinetic energy will enhance the mixing and transport of fluids, and the impeller makes the fluids get more energy. In addition, a modified hybrid Reynolds Average Numerical Simulation/Large Eddy Simulation (RANS/LES) model was proposed for unsteady calculation, and the performances, internal flow states and the interaction between the pump and the outer region were further revealed under various conditions of the pumpjet propulsor, which provides some references for predicting accurately and selecting conditions optimally in the future.


Sign in / Sign up

Export Citation Format

Share Document