scholarly journals Direct Numerical Simulation and Visualization of Biswirling Jets

2014 ◽  
Vol 6 ◽  
pp. 193731 ◽  
Author(s):  
Jie Yan ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jinsen Gao

Two parallel swirling/rotating jets with a distance between them are termed biswirling jets here, which have important and complicated vortex structures different from the single swirling jet due to the negligible vortex-vortex interactions. The visualization of vortex-vortex interaction between the biswirling jets is accomplished by using direct numerical simulation. The evolution of vortex structures of the biswirling jets is found rather complicated. The turbulent kinetic energy and turbulence dissipation in the central convergence region are augmented locally and rather strongly. The modulation of turbulent kinetic energy by jet-jet interaction upon different scales of vortices is dominated by the swirling levels and the distance between the jets. The turbulent kinetic energy upon intermediate and small scale vortices in bijets with not very high swirling level and at a very close distance is smaller than that in single swirling jets, whereas the opposite is true under a far distance, and so forth.

2010 ◽  
Vol 665 ◽  
pp. 334-356 ◽  
Author(s):  
W.-H. CAI ◽  
F.-C. LI ◽  
H.-N. ZHANG

In order to investigate the turbulent drag reduction phenomenon and understand its mechanism, direct numerical simulation (DNS) was carried out on decaying homogeneous isotropic turbulence (DHIT) with and without polymer additives. We explored the polymer effect on DHIT from the energetic viewpoint, i.e. the decay of the total turbulent kinetic energy and energy distribution at each scale in Fourier space and from the phenomenological viewpoint, i.e. the alterations of vortex structures, the enstrophy and the strain. It was obtained that in DHIT with polymer additives the decay of the turbulent kinetic energy is faster than that in the Newtonian fluid case and a modification of the turbulent kinetic energy transfer process for the Newtonian fluid flow is observed due to the release of the polymer elastic energy into flow structures at certain small scales. Besides, we deduced the transport equations of the enstrophy and the strain, respectively, for DHIT with polymer additives. Based on the analyses of these transport equations, it was found that polymer additives depress both the enstrophy and the strain in DHIT as compared to the Newtonian fluid case, indicating the inhibition effect on small-scale vortex structures and turbulence intensity by polymers.


1998 ◽  
Vol 375 ◽  
pp. 235-263 ◽  
Author(s):  
MARC BOIVIN ◽  
OLIVIER SIMONIN ◽  
KYLE D. SQUIRES

The modulation of isotropic turbulence by particles has been investigated using direct numerical simulation (DNS). The particular focus of the present work is on the class of dilute flows in which particle volume fractions and inter-particle collisions are negligible. Gravitational settling is also neglected and particle motion is assumed to be governed by drag with particle relaxation times ranging from the Kolmogorov scale to the Eulerian time scale of the turbulence and particle mass loadings up to 1. The velocity field was made statistically stationary by forcing the low wavenumbers of the flow. The calculations were performed using 963 collocation points and the Taylor-scale Reynolds number for the stationary flow was 62. The effect of particles on the turbulence was included in the Navier–Stokes equations using the point-force approximation in which 963 particles were used in the calculations. DNS results show that particles increasingly dissipate fluid kinetic energy with increased loading, with the reduction in kinetic energy being relatively independent of the particle relaxation time. Viscous dissipation in the fluid decreases with increased loading and is larger for particles with smaller relaxation times. Fluid energy spectra show that there is a non-uniform distortion of the turbulence with a relative increase in small-scale energy. The non-uniform distortion significantly affects the transport of the dissipation rate, with the production and destruction of dissipation exhibiting completely different behaviours. The spectrum of the fluid–particle energy exchange rate shows that the fluid drags particles at low wavenumbers while the converse is true at high wavenumbers for small particles. A spectral analysis shows that the increase of the high-wavenumber portion of the fluid energy spectrum can be attributed to transfer of the fluid–particle covariance by the fluid turbulence. This in turn explains the relative increase of small-scale energy caused by small particles observed in the present simulations as well as those of Squires & Eaton (1990) and Elghobashi & Truesdell (1993).


2021 ◽  
Vol 926 ◽  
Author(s):  
Jiaxing Song ◽  
Fenghui Lin ◽  
Nansheng Liu ◽  
Xi-Yun Lu ◽  
Bamin Khomami

The flow physics of inertio-elastic turbulent Taylor–Couette flow for a radius ratio of $0.5$ in the Reynolds number ( $Re$ ) range of $500$ to $8000$ is investigated via direct numerical simulation. It is shown that as $Re$ is increased the turbulence dynamics can be subdivided into two distinct regimes: (i) a low $Re \leqslant 1000$ regime where the flow physics is essentially dominated by nonlinear elastic forces and the main contribution to transport and mixing of momentum, stress and energy comes from large-scale flow structures in the bulk region and (ii) a high $Re \geqslant 5000$ regime where inertial forces govern the flow physics and the flow dynamics is mainly governed by small-scale flow structures in the near-wall region. Flow–microstructure coupling analysis reveals that the elastic Görtler instability in the near-wall region is triggered via significant polymer extension and commensurately high hoop stresses. This instability gives rise to small-scale elastic vortical structures identified as elastic Görtler vortices which are present at all $Re$ considered. In fact, these vortices develop herringbone streaks near the inner wall that have a longer average life span than their Newtonian counterparts due to their elastic origin. Examination of the budgets of mean streamwise enstrophy, mean kinetic energy, turbulent kinetic energy and Reynolds shear stress demonstrates that increasing fluid inertia hinders the generation of elastic stresses, leading to a monotonic reduction of the elastic-related effects on the flow physics.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wenkai Xu ◽  
Nan Gui ◽  
Liang Ge ◽  
Jie Yan

A direct numerical simulation (DNS) was carried out to study twin swirling jets which are issued from two parallel nozzles at a Reynolds number of Re = 5000 and three swirl levels of S = 0.68, 1.08, and 1.42, respectively. The basic structures of vortex-vortex interaction and temporal evolution are illustrated. The characteristics of axial variation of turbulent fluctuation velocities, in both the near and far field, in comparison to a single swirling jet, are shown to explore the effects of vortex-vortex interaction on turbulence modifications. Moreover, the second order turbulent fluctuations are also shown, by which the modification of turbulence associated with the coherent or correlated turbulent fluctuation and turbulent kinetic energy transport characteristics are clearly indicated. It is found that the twin swirling flow has a fairly strong localized vortex-vortex interaction between a pair of inversely rotated vortices. The location and strength of interaction depend on swirl level greatly. The modification of vortex takes place by transforming large-scale vortices into complex small ones, whereas the modulation of turbulent kinetic energy is continuously augmented by strong vortex modification.


2015 ◽  
Vol 764 ◽  
pp. 362-394 ◽  
Author(s):  
T. Dairay ◽  
V. Fortuné ◽  
E. Lamballais ◽  
L.-E. Brizzi

AbstractDirect numerical simulation (DNS) of an impinging jet flow with a nozzle-to-plate distance of two jet diameters and a Reynolds number of 10 000 is carried out at high spatial resolution using high-order numerical methods. The flow configuration is designed to enable the development of a fully turbulent regime with the appearance of a well-marked secondary maximum in the radial distribution of the mean heat transfer. The velocity and temperature statistics are validated with documented experiments. The DNS database is then analysed focusing on the role of unsteady processes to explain the spatial distribution of the heat transfer coefficient at the wall. A phenomenological scenario is proposed on the basis of instantaneous flow visualisations in order to explain the non-monotonic radial evolution of the Nusselt number in the stagnation region. This scenario is then assessed by analysing the wall temperature and the wall shear stress distributions and also through the use of conditional averaging of velocity and temperature fields. On one hand, the heat transfer is primarily driven by the large-scale toroidal primary and secondary vortices emitted periodically. On the other hand, these vortices are subjected to azimuthal distortions associated with the production of radially elongated structures at small scale. These distortions are responsible for the appearance of very high heat transfer zones organised as cold fluid spots on the heated wall. These cold spots are shaped by the radial structures through a filament propagation of the heat transfer. The analysis of probability density functions shows that these strong events are highly intermittent in time and space while contributing essentially to the secondary peak observed in the radial evolution of the Nusselt number.


2018 ◽  
Vol 857 ◽  
pp. 270-290 ◽  
Author(s):  
Josef Hasslberger ◽  
Markus Klein ◽  
Nilanjan Chakraborty

This paper presents a detailed investigation of flow topologies in bubble-induced two-phase turbulence. Two freely moving and deforming air bubbles that have been suspended in liquid water under counterflow conditions have been considered for this analysis. The direct numerical simulation data considered here are based on the one-fluid formulation of the two-phase flow governing equations. To study the development of coherent structures, a local flow topology analysis is performed. Using the invariants of the velocity gradient tensor, all possible small-scale flow structures can be categorized into two nodal and two focal topologies for incompressible turbulent flows. The volume fraction of focal topologies in the gaseous phase is consistently higher than in the surrounding liquid phase. This observation has been argued to be linked to a strong vorticity production at the regions of simultaneous high fluid velocity and high interface curvature. Depending on the regime (steady/laminar or unsteady/turbulent), additional effects related to the density and viscosity jump at the interface influence the behaviour. The analysis also points to a specific term of the vorticity transport equation as being responsible for the induction of vortical motion at the interface. Besides the known mechanisms, this term, related to surface tension and gradients of interface curvature, represents another potential source of turbulence production that lends itself to further investigation.


2018 ◽  
Vol 859 ◽  
pp. 819-838 ◽  
Author(s):  
Josef Hasslberger ◽  
Sebastian Ketterl ◽  
Markus Klein ◽  
Nilanjan Chakraborty

The local flow topology analysis of the primary atomization of liquid jets has been conducted using the invariants of the velocity-gradient tensor. All possible small-scale flow structures are categorized into two focal and two nodal topologies for incompressible flows in both liquid and gaseous phases. The underlying direct numerical simulation database was generated by the one-fluid formulation of the two-phase flow governing equations including a high-fidelity volume-of-fluid method for accurate interface propagation. The ratio of liquid-to-gas fluid properties corresponds to a diesel jet exhausting into air. Variation of the inflow-based Reynolds number as well as Weber number showed that both these non-dimensional numbers play a pivotal role in determining the nature of the jet break-up, but the flow topology behaviour appears to be dominated by the Reynolds number. Furthermore, the flow dynamics in the gaseous phase is generally less homogeneous than in the liquid phase because some flow regions resemble a laminar-to-turbulent transition state rather than fully developed turbulence. Two theoretical models are proposed to estimate the topology volume fractions and to describe the size distribution of the flow structures, respectively. In the latter case, a simple power law seems to be a reasonable approximation of the measured topology spectrum. According to that observation, only the integral turbulent length scale would be required as an input for the a priori prediction of the topology size spectrum.


2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


1997 ◽  
Vol 334 ◽  
pp. 353-379 ◽  
Author(s):  
KRISHNAN MAHESH ◽  
SANJIVA K. LELE ◽  
PARVIZ MOIN

Direct numerical simulation and inviscid linear analysis are used to study the interaction of a normal shock wave with an isotropic turbulent field of vorticity and entropy fluctuations. The role of the upstream entropy fluctuations is emphasized. The upstream correlation between the vorticity and entropy fluctuations is shown to strongly influence the evolution of the turbulence across the shock. Negative upstream correlation between u′ and T′ is seen to enhance the amplification of the turbulence kinetic energy, vorticity and thermodynamic fluctuations across the shock wave. Positive upstream correlation has a suppressing effect. An explanation based on the relative effects of bulk compression and baroclinic torque is proposed, and a scaling law is derived for the evolution of vorticity fluctuations across the shock. The validity of Morkovin's hypothesis across a shock wave is examined. Linear analysis is used to suggest that shock-front oscillation would invalidate the relation between urms and Trms, as expressed by the hypothesis.


Sign in / Sign up

Export Citation Format

Share Document