scholarly journals Anabolic Properties of High Mobility Group Box Protein-1 in Human Periodontal Ligament CellsIn Vitro

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Michael Wolf ◽  
Stefan Lossdörfer ◽  
Piero Römer ◽  
Rogerio Bastos Craveiro ◽  
James Deschner ◽  
...  

High mobility group box protein-1 (HMGB1) is mainly recognized as a chemoattractant for macrophages in the initial phase of host response to pathogenic stimuli. However, recent findings provide evidence for anabolic properties in terms of enhanced proliferation, migration, and support of wound healing capacity of mesenchymal cells suggesting a dual role of the cytokine in the regulation of immune response and subsequent regenerative processes. Here, we examined potential anabolic effects of HMGB1 on human periodontal ligament (PDL) cells in the regulation of periodontal remodelling, for example, during orthodontic tooth movement. Preconfluent human PDL cells (hPDL) were exposed to HMGB1 protein and the influence on proliferation, migration, osteogenic differentiation, and biomineralization was determined by MTS assay, real time PCR, immunofluorescence cytochemistry, ELISA, and von Kossa staining. HMGB1 protein increased hPDL cell proliferation, migration, osteoblastic marker gene expression, and protein production as well as mineralized nodule formation significantly. The present findings support the dual character of HMGB1 with anabolic therapeutic potential that might support the reestablishment of the structural and functional integrity of the periodontium following periodontal trauma such as orthodontic tooth movement.

2019 ◽  
Vol 20 (14) ◽  
pp. 1474-1485 ◽  
Author(s):  
Eyaldeva C. Vijayakumar ◽  
Lokesh Kumar Bhatt ◽  
Kedar S. Prabhavalkar

High mobility group box-1 (HMGB1) mainly belongs to the non-histone DNA-binding protein. It has been studied as a nuclear protein that is present in eukaryotic cells. From the HMG family, HMGB1 protein has been focused particularly for its pivotal role in several pathologies. HMGB-1 is considered as an essential facilitator in diseases such as sepsis, collagen disease, atherosclerosis, cancers, arthritis, acute lung injury, epilepsy, myocardial infarction, and local and systemic inflammation. Modulation of HMGB1 levels in the human body provides a way in the management of these diseases. Various strategies, such as HMGB1-receptor antagonists, inhibitors of its signalling pathway, antibodies, RNA inhibitors, vagus nerve stimulation etc. have been used to inhibit expression, release or activity of HMGB1. This review encompasses the role of HMGB1 in various pathologies and discusses its therapeutic potential in these pathologies.


2006 ◽  
Vol 85 (8) ◽  
pp. 757-760 ◽  
Author(s):  
L. Liu ◽  
K. Igarashi ◽  
H. Kanzaki ◽  
M. Chiba ◽  
H. Shinoda ◽  
...  

Periodontal ligament (PDL) cells play an essential role in orthodontic tooth movement. We recently reported that clodronate, a non-N-containing bisphosphonate, strongly inhibited tooth movement in rats, and thus could be a useful adjunct for orthodontic treatment. However, it is not clear how clodronate affects the responses of PDL cells to orthodontic force. In this study, we hypothesized that clodronate prevents the mechanical stress-induced production of prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and nitric oxide (NO) in human PDL cells. A compressive stimulus caused a striking increase in PGE2 production, while the responses of IL-1β and NO were less marked. Clodronate concentration-dependently inhibited the stress-induced production of PGE2. Clodronate also strongly inhibited stress-induced gene expression for COX-2 and RANKL. These results suggest that the inhibitory effects of clodronate on tooth movement and osteoclasts may be due, at least in part, to the inhibition of COX-2-dependent PGE2 production and RANKL expression in PDL cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yukun Jiang ◽  
Yuzhe Guan ◽  
Yuanchen Lan ◽  
Shuo Chen ◽  
Tiancheng Li ◽  
...  

Orthodontic tooth movement (OTM) is a process depending on the remodeling of periodontal tissues surrounding the roots. Orthodontic forces trigger the conversion of mechanical stimuli into intercellular chemical signals within periodontal ligament (PDL) cells, activating alveolar bone remodeling, and thereby, initiating OTM. Recently, the mechanosensitive ion channel Piezo1 has been found to play pivotal roles in the different types of human cells by transforming external physical stimuli into intercellular chemical signals. However, the function of Piezo1 during the mechanotransduction process of PDL cells has rarely been reported. Herein, we established a rat OTM model to study the potential role of Piezo1 during the mechanotransduction process of PDL cells and investigate its effects on the tension side of alveolar bone remodeling. A total of 60 male Sprague-Dawley rats were randomly assigned into three groups: the OTM + inhibitor (INH) group, the OTM group, and the control (CON) group. Nickel-titanium orthodontic springs were applied to trigger tooth movement. Mice were sacrificed on days 0, 3, 7, and 14 after orthodontic movement for the radiographic, histological, immunohistochemical, and molecular biological analyses. Our results revealed that the Piezo1 channel was activated by orthodontic force and mainly expressed in the PDL cells during the whole tooth movement period. The activation of the Piezo1 channel was essential for maintaining the rate of orthodontic tooth movement and facilitation of new alveolar bone formation on the tension side. Reduced osteogenesis-associated transcription factors such as Runt-related transcription factor 2 (RUNX2), Osterix (OSX), and receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio were examined when the function of Piezo1 was inhibited. In summary, Piezo1 plays a critical role in mediating both the osteogenesis and osteoclastic activities on the tension side during OTM.


Life Sciences ◽  
2019 ◽  
Vol 238 ◽  
pp. 116924 ◽  
Author(s):  
Yam Nath Paudel ◽  
Efthalia Angelopoulou ◽  
Bhuvan K C ◽  
Christina Piperi ◽  
Iekhsan Othman

Author(s):  
Hiroyuki Kanzaki ◽  
Satoshi Wada ◽  
Yuuki Yamaguchi ◽  
Yuta Katsumata ◽  
Kanako Itohiya ◽  
...  

Background: Osteoclastic bone resorption in the compression zone of periodontal ligament (PDL) plays a role in orthodontic tooth movement, and is regulated by the balance of RANKL and OPG. Compression downregulates OPG, conversely, tension upregulates OPG in PDL cells. However, the regulatory mechanism of OPG expression in PDL cells under different mechanical stresses remains unclear. Methods: To study microRNA (miRNA) expression profiles, compression (2g/cm2) or tension (15%-elongation) was applied to immortalized human PDL (HPL) cells, and miRNA was extracted. The miRNA expression was analyzed using a human miRNA microarray, and the changes of the miRNA expression were confirmed by real-time RT-PCR. In addition, miR-3198-mimic and -inhibitor were transfected into HPL cells to understand the resulting OPG expression and production. Results: Certain miRNAs were expressed differentially under compression and tension. Some miRNAs including miR-3198 were upregulated only by compression. Real-time RT-PCR confirmed that compression induced miR-3198, but tension reduced it, in HPL cells. miR-3198-inhibitor upregulated and miR-3198-mimic reduced OPG in HPL cells. miR-3198-inhibitor rescued the compression-mediated downregulation of OPG. On the other hand, miR-3198-mimic reduced OPG expression under tension. Conclusion: We conclude that miR-3198 is upregulated by compression and is downregulated by tension, suggesting that miR-3198 downregulates OPG in response to mechanical stress.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 932
Author(s):  
Julia Brockhaus ◽  
Rogerio B. Craveiro ◽  
Irma Azraq ◽  
Christian Niederau ◽  
Sarah K. Schröder ◽  
...  

Human Periodontal Ligament Fibroblasts (hPDLF), as part of the periodontal apparatus, modulate inflammation, regeneration and bone remodeling. Interferences are clinically manifested as attachment loss, tooth loosening and root resorption. During orthodontic tooth movement (OTM), remodeling and adaptation of the periodontium is required in order to enable tooth movement. hPDLF involvement in the early phase-OTM compression side was investigated for a 72-h period through a well-studied in vitro model. Changes in the morphology, cell proliferation and cell death were analyzed. Specific markers of the cell cycle were investigated by RT-qPCR and Western blot. The study showed that the morphology of hPDLF changes towards more unstructured, unsorted filaments under mechanical compression. The total cell numbers were significantly reduced with a higher cell death rate over the whole observation period. hPDLF started to recover to pretreatment conditions after 48 h. Furthermore, key molecules involved in the cell cycle were significantly reduced under compressive force at the gene expression and protein levels. These findings revealed important information for a better understanding of the preservation and remodeling processes within the periodontium through Periodontal Ligament Fibroblasts during orthodontic tooth movement. OTM initially decelerates the hPDLF cell cycle and proliferation. After adapting to environmental changes, human Periodontal Ligament Fibroblasts can regain homeostasis of the periodontium, affecting its reorganization.


Sign in / Sign up

Export Citation Format

Share Document