scholarly journals Behaviors and Numerical Simulations of Malaria Dynamic Models with Transgenic Mosquitoes

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xiongwei Liu ◽  
Junjun Xu ◽  
Xiao Wang ◽  
Lizhi Cheng

The release of transgenic mosquitoes to interact with wild ones is a promising method for controlling malaria. How to effectively release transgenic mosquitoes to prevent malaria is always a concern for researchers. This paper investigates two methods of releasing transgenic mosquitoes and proposes two epidemic models involving malaria patients, anopheles, wild mosquitoes, and transgenic mosquitoes based on system of continuous differential equations. A basic reproduction numberR0is defined for the models and it serves as a threshold parameter that predicts whether malaria will spread. By theoretical analysis of the dynamic behaviors of the models and numerical simulations, it is verified that malaria can be effectively controlled by the opportune release of transgenic mosquitoes; that is, whenR0≤1, malaria will disappear; whenR0>1, malaria will become an endemic disease in the target field.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Eric Ávila-Vales ◽  
Erika Rivero-Esquivel ◽  
Gerardo Emilio García-Almeida

We consider a family of periodic SEIRS epidemic models with a fairly general incidence rate of the form Sf(I), and it is shown that the basic reproduction number determines the global dynamics of the models and it is a threshold parameter for persistence of disease. Numerical simulations are performed using a nonlinear incidence rate to estimate the basic reproduction number and illustrate our analytical findings.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Lian Duan ◽  
Lihong Huang ◽  
Chuangxia Huang

<p style='text-indent:20px;'>In this paper, we are concerned with the dynamics of a diffusive SIRI epidemic model with heterogeneous parameters and distinct dispersal rates for the susceptible and infected individuals. We first establish the basic properties of solutions to the model, and then identify the basic reproduction number <inline-formula><tex-math id="M1">\begin{document}$ \mathscr{R}_{0} $\end{document}</tex-math></inline-formula> which serves as a threshold parameter that predicts whether epidemics will persist or become globally extinct. Moreover, we study the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible or infected individuals approaches zero. Our analytical results reveal that the epidemics can be extinct by limiting the movement of the susceptible individuals, and the infected individuals concentrate on certain points in some circumstances when limiting their mobility.</p>


2012 ◽  
Vol 54 (1-2) ◽  
pp. 108-115 ◽  
Author(s):  
M. G. ROBERTS

AbstractAnnual epidemics of influenza A typically involve two subtypes, with a degree of cross-immunity. We present a model of an epidemic of two interacting viruses, where the degree of cross-immunity may be unknown. We treat the unknown as a second independent variable, and expand the dependent variables in orthogonal functions of this variable. The resulting set of differential equations is solved numerically. We show that if the population is initially more susceptible to one variant, if that variant invades earlier, or if it has a higher basic reproduction number than the other variant, then its dynamics are largely unaffected by cross-immunity. In contrast, the dynamics of the other variant may be considerably restricted.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jinliang Wang ◽  
Hongquan Sun

This paper is concerned with a reaction-diffusion heroin model in a bound domain. The objective of this paper is to explore the threshold dynamics based on threshold parameter and basic reproduction number (BRN) ℜ0, and it is proved that if ℜ0<1, heroin spread will be extinct, while if ℜ0>1, heroin spread is uniformly persistent and there exists a positive heroin-spread steady state. We also obtain that the explicit formula of ℜ0 and global attractiveness of constant positive steady state (PSS) when all parameters are positive constants. Our simulation results reveal that compared to the homogeneous setting, the spatial heterogeneity has essential impacts on increasing the risk of heroin spread.


2009 ◽  
Vol 6 (40) ◽  
pp. 979-987 ◽  
Author(s):  
L. Pellis ◽  
N. M. Ferguson ◽  
C. Fraser

The basic reproduction number R 0 is one of the most important concepts in modern infectious disease epidemiology. However, for more realistic and more complex models than those assuming homogeneous mixing in the population, other threshold quantities can be defined that are sometimes more useful and easily derived in terms of model parameters. In this paper, we present a model for the spread of a permanently immunizing infection in a population socially structured into households and workplaces/schools, and we propose and discuss a new household-to-household reproduction number R H for it. We show how R H overcomes some of the limitations of a previously proposed threshold parameter, and we highlight its relationship with the effort required to control an epidemic when interventions are targeted at randomly selected households.


2021 ◽  
Vol 2 (2) ◽  
pp. 68-79
Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Eti Hartati

This study developed a model for the spread of COVID-19 disease using the SIR model which was added by a health mask and quarantine for infected individuals. The population is divided into six subpopulations, namely the subpopulation susceptible without a health mask, susceptible using a health mask, infected without using a health mask, infected using a health mask, quarantine for infected individuals, and the subpopulation to recover. The results obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (R0). The existence of a disease-free equilibrium point is unconditional, whereas an endemic equilibrium point exists if the basic reproduction number is more than one. Stability analysis of the local asymptotically stable disease-free equilibrium point when the basic reproduction number is less than one. Furthermore, numerical simulations are carried out to provide a geometric picture related to the results that have been analyzed. The results of numerical simulations support the results of the analysis obtained. Finally, the sensitivity analysis of the basic reproduction numbers carried out obtained four parameters that dominantly affect the basic reproduction number, namely the rate of contact of susceptible individuals with infection, the rate of health mask use, the rate of health mask release, and the rate of quarantine for infected individuals.


2021 ◽  
Author(s):  
Lan Meng ◽  
Wei Zhu

Abstract In this paper, an n-patch SEIR epidemic model for the coronavirus disease 2019 (COVID-19) is presented. It is shown that there is unique disease-free equilibrium for this model. Then, the dynamic behavior is studied by the basic reproduction number. Some numerical simulations with three patches are given to validate the effectiveness of the theoretical results. The influence of quarantined rate and population migration rate on the basic reproduction number is also discussed by simulation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Abdelrazig K. Tarboush ◽  
Zhengdi Zhang

In this paper, we investigate the impact of a periodically evolving domain on the dynamics of the diffusive West Nile virus. A reaction-diffusion model on a periodically and isotropically evolving domain which describes the transmission of the West Nile virus is proposed. In addition to the classical basic reproduction number, the spatial-temporal basic reproduction number depending on the periodic evolution rate is introduced and its properties are discussed. Under some conditions, we explore the long-time behavior of the virus. The virus will go extinct if the spatial-temporal basic reproduction number is less than or equal to one. The persistence of the virus happens if the spatial-temporal basic reproduction number is greater than one. We consider special case when the periodic evolution rate is equivalent to one to better understand the impact of the periodic evolution rate on the persistence or extinction of the virus. Some numerical simulations are performed in order to illustrate our analytical results. Our theoretical analysis and numerical simulations show that the periodic change of the habitat range plays an important role in the West Nile virus transmission, in particular, the increase of periodic evolution rate has positive effect on the spread of the virus.


Author(s):  
Yufeng Xu

The comparison principle of fractional differential equations is discussed in this paper. We obtain two kinds of comparison principle which are related to the functions in the right hand side of equations, and the order of fractional derivative, respectively. By using the comparison principle, the boundedness of fractional Lorenz system and fractional Lorenz-like system are studied numerically. Numerical simulations are carried out which demonstrate our theoretical analysis.


2020 ◽  
Vol 15 ◽  
pp. 34 ◽  
Author(s):  
Jayrold P. Arcede ◽  
Randy L. Caga-anan ◽  
Cheryl Q. Mentuda ◽  
Youcef Mammeri

A mathematical model was developed describing the dynamic of the COVID-19 virus over a population considering that the infected can either be symptomatic or not. The model was calibrated using data on the confirmed cases and death from several countries like France, Philippines, Italy, Spain, United Kingdom, China, and the USA. First, we derived the basic reproduction number, R0, and estimated the effective reproduction Reff for each country. Second, we were interested in the merits of interventions, either by distancing or by treatment. Results revealed that total and partial containment is effective in reducing the transmission. However, its duration may be long to eradicate the disease (104 days for France). By setting the end of containment as the day when hospital capacity is reached, numerical simulations showed that the duration can be reduced (up to only 39 days for France if the capacity is 1000 patients). Further, results pointed out that the effective reproduction number remains large after containment. Therefore, testing and isolation are necessary to stop the disease.


Sign in / Sign up

Export Citation Format

Share Document