scholarly journals On the Coupling of Two Models of the Human Immune Response to an Antigen

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Bárbara de M. Quintela ◽  
Rodrigo Weber dos Santos ◽  
Marcelo Lobosco

The development of mathematical models of the immune response allows a better understanding of the multifaceted mechanisms of the defense system. The main purpose of this work is to present a scheme for coupling distinct models of different scales and aspects of the immune system. As an example, we propose a new model where the local tissue inflammation processes are simulated with partial differential equations (PDEs) whereas a system of ordinary differential equations (ODEs) is used as a model for the systemic response. The simulation of distinct scenarios allows the analysis of the dynamics of various immune cells in the presence of an antigen. Preliminary results of this approach with a sensitivity analysis of the coupled model are shown but further validation is still required.

2011 ◽  
Vol 73 (3) ◽  
pp. 171-175 ◽  
Author(s):  
Janet De Souza-Hart

Podcasts (digital audio files) can be utilized creatively to supplement classroom learning. They can be both easily created by instructors and conveniently accessed by students. Students are very receptive to the use of this type of technology as a way to reinforce conceptual understanding of course material. An activity combining a podcast with an active-learning worksheet references the literary classic "The Lord of the Rings" as an analogy to help students understand the many proteins, cells, and processes involved in the human immune response. This activity has helped a significant number of students improve their understanding of this subject.


2020 ◽  
Author(s):  
Bhanwar Lal Puniya ◽  
Robert Moore ◽  
Akram Mohammed ◽  
Rada Amin ◽  
Alyssa La Fleur ◽  
...  

AbstractThe human immune system, which protects against pathogens and diseases, is a complex network of cells and molecules. The effects of complex dynamical interactions of pathogens and immune cells on the immune response can be studied using computational models. However, a model of the entire immune system is still lacking. Here, we developed a comprehensive computational model that integrates innate and adaptive immune cells, cytokines, immunoglobulins, and nine common pathogens from different classes of virus, bacteria, parasites, and fungi. This model was used to investigate the dynamics of the immune system under two scenarios: (1) single infection with pathogens, and (2) various medically relevant pathogen coinfections. In coinfections, we found that the order of infecting pathogens has a significant impact on the dynamics of cytokines and immunoglobulins. Thus, our model provides a tool to simulate immune responses under different dosage of pathogens and their combinations, which can be further extended and used as a tool for drug discovery and immunotherapy. Furthermore, the model provides a comprehensive and simulatable blueprint of the human immune system as a result of the synthesis of the vast knowledge about the network-like interactions of various components of the system.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Alexandre Bittencourt Pigozzo ◽  
Gilson Costa Macedo ◽  
Rodrigo Weber dos Santos ◽  
Marcelo Lobosco

Bacterial infections can be of two types: acute or chronic. The chronic bacterial infections are characterized by being a large bacterial infection and/or an infection where the bacteria grows rapidly. In these cases, the immune response is not capable of completely eliminating the infection which may lead to the formation of a pattern known as microabscess (or abscess). The microabscess is characterized by an area comprising fluids, bacteria, immune cells (mainly neutrophils), and many types of dead cells. This distinct pattern of formation can only be numerically reproduced and studied by models that capture the spatiotemporal dynamics of the human immune system (HIS). In this context, our work aims to develop and implement an initial computational model to study the process of microabscess formation during a bacterial infection.


2021 ◽  
Vol 22 (14) ◽  
pp. 7503
Author(s):  
Daniel Sausen ◽  
Kirstin Reed ◽  
Maimoona Bhutta ◽  
Elisa Gallo ◽  
Ronen Borenstein

The human immune system boasts a diverse array of strategies for recognizing and eradicating invading pathogens. Human betaherpesviruses, a highly prevalent subfamily of viruses, include human cytomegalovirus (HCMV), human herpesvirus (HHV) 6A, HHV-6B, and HHV-7. These viruses have evolved numerous mechanisms for evading the host response. In this review, we will highlight the complex interplay between betaherpesviruses and the human immune response, focusing on protein function. We will explore methods by which the immune system first responds to betaherpesvirus infection as well as mechanisms by which viruses subvert normal cellular functions to evade the immune system and facilitate viral latency, persistence, and reactivation. Lastly, we will briefly discuss recent advances in vaccine technology targeting betaherpesviruses. This review aims to further elucidate the dynamic interactions between betaherpesviruses and the human immune system.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


2021 ◽  
Vol 27 (4) ◽  
pp. 571-572 ◽  
Author(s):  
Roberto Burioni ◽  
Eric J. Topol

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Diane Williamson

This review considers the steps required to evaluate a candidate biodefense vaccine or therapy as it emerges from the research phase, in order to transition it to development. The options for preclinical modelling of efficacy are considered in the context of the FDA’s Animal Rule.


1989 ◽  
Vol 21 (4) ◽  
pp. 386???392 ◽  
Author(s):  
LEONARD H. CALABRESE ◽  
SUSAN M. KLEINER ◽  
BARBARA P. BARNA ◽  
CHRISTINE I. SKIBINSKI ◽  
DONALD T. KIRKENDALL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document