scholarly journals Preparation of Zirconium Oxide Powder Using Zirconium Carboxylate Precursors

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohammed H. Al-Hazmi ◽  
YongMan Choi ◽  
Allen W. Apblett

Zirconia was prepared at low temperatures (<450°C) using single several source precursors based on zirconium carboxylates where the R groups were systematically varied. The combination of density functional theory (DFT) calculations and extensive characterization of the precursors (i.e., X-ray diffraction, thermal gravimetric analysis, infrared spectroscopy, and scanning electron microscopy) indicated that the carboxylic acid complexes may link the zirconium metal with a cis bidentate configuration. Periodic DFT calculations were performed to examine the interaction between monoclinic ZrO2 and propanoic acid. Dissociative adsorption takes place through the cis bidentate structure with an adsorption energy of −1.43 eV. Calculated vibrational frequencies using the optimized structure are in good agreement with experimental findings.

Author(s):  
Wei Peng ◽  
Victor Balédent ◽  
Marie-Bernadette Lepetit ◽  
Antoine Vaunat ◽  
Elisa Rebolini ◽  
...  

The room-temperature structural properties of the RMn2O5 multiferroics have been investigated under pressure, using powder X-ray scattering and density functional theory (DFT) calculations. It was possible to determine the lattice parameters and the main atomic positions as a function of pressure. Good agreement was observed between the X-ray and DFT results for most of the determined crystallographic data. From the DFT calculations, it was possible to infer the pressure evolution of the exchange interactions, and this analysis led to the conclusion that the onset of the q = (½, 0, ½) magnetic structure under pressure is related to the increase in the J 1 super-exchange terms (due to the reduction in the Mn—O distances) compared with the Mn—R exchange interactions. In addition, the 1D antiferromagnetic character of the compounds should be reinforced under pressure.


2006 ◽  
Vol 84 (8) ◽  
pp. 1045-1049 ◽  
Author(s):  
Shabaan AK Elroby ◽  
Kyu Hwan Lee ◽  
Seung Joo Cho ◽  
Alan Hinchliffe

Although anisyl units are basically poor ligands for metal ions, the rigid placements of their oxygens during synthesis rather than during complexation are undoubtedly responsible for the enhanced binding and selectivity of the spherand. We used standard B3LYP/6-31G** (5d) density functional theory (DFT) to investigate the complexation between spherands containing five anisyl groups, with CH2–O–CH2 (2) and CH2–S–CH2 (3) units in an 18-membered macrocyclic ring, and the cationic guests (Li+, Na+, and K+). Our geometric structure results for spherands 1, 2, and 3 are in good agreement with the previously reported X-ray diffraction data. The absolute values of the binding energy of all the spherands are inversely proportional to the ionic radius of the guests. The results, taken as a whole, show that replacement of one anisyl group by CH2–O–CH2 (2) and CH2–S–CH2 (3) makes the cavity bigger and less preorganized. In addition, both the binding and specificity decrease for small ions. The spherands 2 and 3 appear beautifully preorganized to bind all guests, so it is not surprising that their binding energies are close to the parent spherand 1. Interestingly, there is a clear linear relation between the radius of the cavity and the binding energy (R2 = 0.999).Key words: spherands, preorganization, density functional theory, binding energy, cavity size.


Inorganics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 28
Author(s):  
Kriti Pathak ◽  
Chandan Nandi ◽  
Jean-François Halet ◽  
Sundargopal Ghosh

Synthesis, isolation, and structural characterization of unique metal rich diamagnetic cobaltaborane clusters are reported. They were obtained from reactions of monoborane as well as modified borohydride reagents with cobalt sources. For example, the reaction of [Cp*CoCl]2 with [LiBH4·THF] and subsequent photolysis with excess [BH3·THF] (THF = tetrahydrofuran) at room temperature afforded the 11-vertex tricobaltaborane nido-[(Cp*Co)3B8H10] (1, Cp* = η5-C5Me5). The reaction of Li[BH2S3] with the dicobaltaoctaborane(12) [(Cp*Co)2B6H10] yielded the 10-vertex nido-2,4-[(Cp*Co)2B8H12] cluster (2), extending the library of dicobaltadecaborane(14) analogues. Although cluster 1 adopts a classical 11-vertex-nido-geometry with one cobalt center and four boron atoms forming the open pentagonal face, it disobeys the Polyhedral Skeletal Electron Pair Theory (PSEPT). Compound 2 adopts a perfectly symmetrical 10-vertex-nido framework with a plane of symmetry bisecting the basal boron plane resulting in two {CoB3} units bridged at the base by two boron atoms and possesses the expected electron count. Both compounds were characterized in solution by multinuclear NMR and IR spectroscopies and by mass spectrometry. Single-crystal X-ray diffraction analyses confirmed the structures of the compounds. Additionally, density functional theory (DFT) calculations were performed in order to study and interpret the nature of bonding and electronic structures of these complexes.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1374
Author(s):  
Mariela M. Nolasco ◽  
Catarina F. Araujo ◽  
Pedro D. Vaz ◽  
Ana M. Amado ◽  
Paulo Ribeiro-Claro

The present work emphasizes the value of periodic density functional theory (DFT) calculations in the assessment of the vibrational spectra of molecular crystals. Periodic calculations provide a nearly one-to-one match between the calculated and observed bands in the inelastic neutron scattering (INS) spectrum of crystalline 4-phenylbenzaldehyde, thus validating their assignment and correcting previous reports based on single molecule calculations. The calculations allow the unambiguous assignment of the phenyl torsional mode at ca. 118–128 cm−1, from which a phenyl torsional barrier of ca. 4000 cm−1 is derived, and the identification of the collective mode involving the antitranslational motion of CH···O bonded pairs, a hallmark vibrational mode of systems where C-H···O contacts are an important feature.


Crystals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 222
Author(s):  
Lider ◽  
Sukhikh ◽  
Smolentsev ◽  
Semitut ◽  
Filatov ◽  
...  

Two binuclear coordination compounds of Cu(II) chloride with the bitopic ligand 1,1,2,2-tetrakis(pyrazol-1-yl)ethane (Pz4) of the composition [Cu2(µ2Pz4)(DMSO)2Cl4]·4H2O and [Cu2(µ2Pz4)(DMSO)2Cl4]∙2DMSO were prepared and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray diffraction, and powder diffraction analysis. It was shown that in contrast to silver(I) and copper(II) nitrates, copper(II) chloride forms discrete complexes instead of coordination polymers. The supramolecular structure of the complex [Cu2(µ2Pz4)(DMSO)2Cl4]·4H2O with lattice water molecules is formed by OH···Cl and OH···O hydrogen bonds. Density functional theory (DFT) calculations of vibrational frequencies of the ligand and its copper(II) complex allowed for assigning IR bands to specific vibrations.


2007 ◽  
Vol 5 (1) ◽  
pp. 201-220 ◽  
Author(s):  
Khaled Bahgat ◽  
Abdel Ragheb

AbstractThe geometry, frequency and intensity of the vibrational bands of 8-hydroxyquinoline and its 5,7-dichloro, 5,7-dibromo, 5,7-diiodo and 5,7-dinitro derivatives were obtained by the density functional theory (DFT) calculations with Becke3-Lee-Parr (B3LYP) functional and 6-31G* basis set. The effects of chloride, bromide, iodide and nitro substituent on the vibrational frequencies of 8-hydroxyquinoline have been investigated. The assignments have been proposed with aid of the results of normal coordinate analysis. The observed and calculated spectra are found to be in good agreement.


2018 ◽  
Vol 20 (36) ◽  
pp. 23593-23605 ◽  
Author(s):  
C. Ennis ◽  
R. Auchettl ◽  
D. R. T. Appadoo ◽  
E. G. Robertson

The application of high accuracy periodic DFT calculations to replicate laboratory thin film spectra allowing the assignment of vibrational far-infrared modes in nitrile-bearing planetary ices.


2016 ◽  
Vol 30 (24) ◽  
pp. 1650174
Author(s):  
F. Baniasadi ◽  
N. Sahraei ◽  
M. B. Fathi ◽  
M. M. Tehranchi ◽  
N. Safari ◽  
...  

Abundant asymmetric unit of the [FeBr4]2[py.H]3Br magnetic molecule in the acetonitrile solvent was characterized via Debye function analysis (DFA) of the X-ray powder diffraction pattern from dilute solution. A diluted solution of the material in acetonitrile solvent has been prepared to reduce, as far as possible, the interaction between the molecular units. The X-ray diffraction from the sample was measured and Debye function simulations of three out of ten chemically plausible molecular units were observed to suitably comply with the experimental results. These three configurations were further optimized with first-principles method in the framework of density functional theory (DFT) and the most stable structure according to the calculated total energy is presented.


SPIN ◽  
2020 ◽  
Vol 10 (01) ◽  
pp. 2050005
Author(s):  
M. Mokhtari ◽  
D. Amari ◽  
F. Dahmane ◽  
G. Benabdellah ◽  
L. Zekri ◽  
...  

The electronic structure, magnetism and thermal proprieties of the full-Heusler alloys Co2YGa (Y [Formula: see text] V, Cr and Mn) have been investigated by first-principles calculations based on density functional theory with the generalized gradient approximation (GGA). Our obtained results of lattice parameters show reasonable agreement to the previously reported experimental and other theoretical studies. The calculations show that all Co2YGa (Y [Formula: see text] V, Cr and Mn) alloys belong to half-metallic compound with a magnetic moment of 2.00, 3.00 and 4.00 [Formula: see text] at their respective equilibrium lattice constants which is in good agreement with the Slater–Pauling rule and perfect 100% spin polarization at the Fermi level. The thermal effect on the macroscopic properties of these alloys is presented such as the thermal expansion coefficient, heat capacity and Debye temperature, based on the quasi-harmonic Debye model.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiaxin Zhuang ◽  
Roser Morales-Martínez ◽  
Jiangwei Zhang ◽  
Yaofeng Wang ◽  
Yang-Rong Yao ◽  
...  

AbstractThe nature of the actinide-actinide bonds is of fundamental importance to understand the electronic structure of the 5f elements. It has attracted considerable theoretical attention, but little is known experimentally as the synthesis of these chemical bonds remains extremely challenging. Herein, we report a strong covalent Th-Th bond formed between two rarely accessible Th3+ ions, stabilized inside a fullerene cage nanocontainer as Th2@Ih(7)-C80. This compound is synthesized using the arc-discharge method and fully characterized using several techniques. The single-crystal X-Ray diffraction analysis determines that the two Th atoms are separated by 3.816 Å. Both experimental and quantum-chemical results show that the two Th atoms have formal charges of +3 and confirm the presence of a strong covalent Th-Th bond inside Ih(7)-C80. Moreover, density functional theory and ab initio multireference calculations suggest that the overlap between the 7s/6d hybrid thorium orbitals is so large that the bond still exists at Th-Th separations larger than 6 Å. This work demonstrates the authenticity of covalent actinide metal-metal bonds in a stable compound and deepens our fundamental understanding of f element metal bonds.


Sign in / Sign up

Export Citation Format

Share Document