scholarly journals Multiobjective Game Method Based on Self-Adaptive Space Division of Design Variables and Its Application to Vehicle Suspension

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Rui Meng ◽  
Nenggang Xie ◽  
Lu Wang

Based on the similarity between the game theory and the multiobjective design, the bionic mapping and the space mapping are established between the multiobjective optimization model and game model. Then, the multiobjective optimization method based on self-adaptive space division of design variables is proposed. The design variables are divided into multiple strategy subspaces and are assigned to corresponding game players by calculating impact factors,K-means clustering, and correlation analysis. Strategy subspaces of game players are dynamically adjusted in the iteration process. In their own strategy subspaces, each game player takes their payoff function (the mapping of objective function) as monoobjective optimization. It gives the best strategy upon other players. And the best strategies of all players are combined into the group strategy in this game round. Triobjective optimization is carried out for vehicle suspension in this method and it is compared with the traditional game method. The results show that this method has better calculating automaticity and can effectively promote generalization of multiobjective game method and improve the computational efficiency and precision.

2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Lu Wang ◽  
Jian-gang Wang ◽  
Rui Meng ◽  
Neng-gang Xie

It takes two design goals as different game players and design variables are divided into strategy spaces owned by corresponding game player by calculating the impact factor and fuzzy clustering. By the analysis of behavior characteristics of two kinds of intelligent pigs, the big pig's behavior is cooperative and collective, but the small pig's behavior is noncooperative, which are endowed with corresponding game player. Two game players establish the mapping relationship between game players payoff functions and objective functions. In their own strategy space, each game player takes their payoff function as monoobjective for optimization. It gives the best strategy upon other players. All the best strategies are combined to be a game strategy set. With convergence and multiround game, the final game solution is obtained. Taking bi-objective optimization of luffing mechanism of compensative shave block, for example, the results show that the method can effectively solve bi-objective optimization problems with preferred target and the efficiency and accuracy are also well.


Author(s):  
Lifang Zeng ◽  
Dingyi Pan ◽  
Shangjun Ye ◽  
Xueming Shao

A fast multiobjective optimization method for S-duct scoop inlets considering both inflow and outflow is developed and validated. To reduce computation consumption of optimization, a simplified efficient model is proposed, in which only inflow region is simulated. Inlet pressure boundary condition of the efficient model is specified by solving an integral model with both inflow and outflow. An automated optimization system integrating the computational fluid dynamics analysis, nonuniform rational B-spline geometric representation technique, and nondominated sorting genetic algorithm II is developed to minimize the total pressure loss and distortion at the exit of diffuser. Flow field is numerically simulated by solving the Reynolds-averaged Navier–Stokes equation coupled with k–ω shear stress transport turbulence model, and results are validated to agree well with previous experiment. S-duct centreline shape and cross-sectional area distribution are parameterized as the design variables. By analyzing the results of a suggested optimal inlet chosen from the obtained Pareto front, total pressure recovery has increased from 97% to 97.4%, and total pressure distortion DC60 has decreased by 0.0477 (21.7% of the origin) at designed Mach number 0.7. The simplified efficient model has been validated to be reliable, and by which the time cost for the optimization project has been reduced by 70%.


2013 ◽  
Vol 365-366 ◽  
pp. 77-81
Author(s):  
Zhi Wei Feng ◽  
Qian Gang Tang ◽  
Qing Bin Zhang

A multiobjective optimization based vibration isolator design for space application is described. It is common to use passive isolator and isolate the platform noise in space applications. The design of a passive isolator involves a trade-off between the resonant peak reduction and the high frequency attenuation. The equation of motion and transfer function model for single-stage and two-stage connector model is derived by using basic principle. The multiobjective optimization model is proposed, where the design variables are the damping coefficients and stiffness coefficients, the objective functions are the resonant peak reduction and the high frequency attenuation, and the constraints are the natural frequency of the connector. The multiobjective optimization problems for the design of the passive isolator are solved by using the multiobjective evolutionary algorithm based on decomposition (MOEA/D). The Pareto front obtained can provide multiple candidate solutions for the designer. The method is effective for the design process of the passive isolator.


Author(s):  
Kenji Doi ◽  
Masataka Yoshimura ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui

Manufacturing that minimizes the exhaustion of natural resources, energy used, and deleterious environmental impact is increasingly demanded by societies that seek to protect global environments as much as possible. To achieve this, lifecycle design (LCD) is an essential component of product design scenarios, however LCD approaches have not been well integrated in optimal design methods that support quantitative decision making. This study presents a method that yields quantitative solutions through optimization analysis of a conceptual product design incorporating lifecycle considerations. We consider two types of optimization approaches that have different aims, namely, (1) to reduce the use of raw materials and energy consumption, and (2) to facilitate the reuse of the product or its parts when it reaches the end of its useful life. We also focus on how the optimization results differ according to the approach used, from the view point of the 3R concept (Reduce, Reuse and Recycling). Our method obtains optimum solutions by evaluating objectives fitted to each of these two optimization approaches with respect to the product’s lifecycle stages, which are manufacturing, use, maintenance, disposal, reuse and recycling. As an applied example, a simple linear robot model is presented, and Pareto optimum solutions are obtained for the multiobjective optimization problem whose evaluated objectives are the operating accuracy and the different lifecycle costs for the two approaches. The characteristics of the evaluated objectives and design variables, as well as the effects of using material properties as design parameters, are also examined.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Haitao Luo ◽  
Rong Chen ◽  
Siwei Guo ◽  
Jia Fu

At present, hard coating structures are widely studied as a new passive damping method. Generally, the hard coating material is completely covered on the surface of the thin-walled structure, but the local coverage cannot only achieve better vibration reduction effect, but also save the material and processing costs. In this paper, a topology optimization method for hard coated composite plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard coating composite plate is established. The topology optimization model is established with the energy ratio of hard coating layer to base layer as the objective function and the amount of damping material as the constraint condition. The sensitivity expression of the objective function to the design variables is derived, and the iteration of the design variables is realized by the Method of Moving Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can obtain the optimal layout of damping materials for hard coating composite plates. The results show that the damping materials are mainly distributed in the area where the stored modal strain energy is large, which is consistent with the traditional design method. Finally, based on the numerical results, the experimental study of local hard coating composites plate is carried out. The results show that the topology optimization method can significantly reduce the frequency response amplitude while reducing the amount of damping materials, which shows the feasibility and effectiveness of the method.


Author(s):  
Hong-Seok Park ◽  
Xuan-Phuong Dang

This paper presents potential approaches that increase the energy efficiency of an in-line induction heating system for forging of an automotive crankshaft. Both heat loss reduction and optimization of process parameters are proposed scientifically in order to minimize the energy consumption and the temperature deviation in the workpiece. We applied the numerical multiobjective optimization method in conjunction with the design of experiment (DOE), mathematical approximation with metamodel, nondominated sorting genetic algorithm (GA), and engineering data mining. The results show that using the insulating covers reduces heat by an amount equivalent to 9% of the energy stored in the heated workpiece, and approximately 5.8% of the energy can be saved by process parameter optimization.


2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


Author(s):  
T. E. Potter ◽  
K. D. Willmert ◽  
M. Sathyamoorthy

Abstract Mechanism path generation problems which use link deformations to improve the design lead to optimization problems involving a nonlinear sum-of-squares objective function subjected to a set of linear and nonlinear constraints. Inclusion of the deformation analysis causes the objective function evaluation to be computationally expensive. An optimization method is presented which requires relatively few objective function evaluations. The algorithm, based on the Gauss method for unconstrained problems, is developed as an extension of the Gauss constrained technique for linear constraints and revises the Gauss nonlinearly constrained method for quadratic constraints. The derivation of the algorithm, using a Lagrange multiplier approach, is based on the Kuhn-Tucker conditions so that when the iteration process terminates, these conditions are automatically satisfied. Although the technique was developed for mechanism problems, it is applicable to any optimization problem having the form of a sum of squares objective function subjected to nonlinear constraints.


Sign in / Sign up

Export Citation Format

Share Document