scholarly journals A Probabilistic Analysis of Path Duration Using Routing Protocol in VANETs

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ram Shringar Rao ◽  
Sanjay Kumar Soni ◽  
Nanhay Singh ◽  
Omprakash Kaiwartya

In recent years, various routing metrics such as throughput, end-to-end delay, packet delivery ratio, path duration, and so forth have been used to evaluate the performance of routing protocols in VANETs. Among these routing metrics, path duration is one of the most influential metrics. Highly mobile vehicles cause frequent topology change in vehicular network environment that ultimately affects the path duration. In this paper, we have derived a mathematical model to estimate path duration using border node-based most forward progress within radius (B-MFR), a position based routing protocol. The mathematical model for estimation of path duration consists of probability of finding next-hop node in forwarding region, estimation of expected number of hops, probability distribution of velocity of nodes, and link duration between each intermediate pair of nodes. The analytical results for the path duration estimation model have been obtained using MATLAB. The model for path duration estimation has been simulated in NS2. Each of the analytical results has been verified through respective simulation results. The result analysis clearly reveals that path duration increases with the increase in transmission range and node density and decreases with the increase in the number of hops in the path and velocity of the nodes.

2017 ◽  
Vol 13 (2) ◽  
pp. 87 ◽  
Author(s):  
Jose V. V. Sobral ◽  
Joel J. P. C. Rodrigues ◽  
Neeraj Kumar ◽  
Chunsheng Zhu ◽  
Raja W. Ahmad

LOADng (Lightweight On-demand Ad hoc Distance-vector Routing Protocol - Next Generation) is an emerging routing protocol that emerged as an alternative to RPL (IPv6 Routing Protocol for Low power and Lossy Networks). Although some work has been dedicated to study LOADng, these works do not analyze the performance of this protocol with different routing metrics. A routing metric is responsible for defining values for paths during the route creation process. Moreover, based on these metrics information a routing protocol will select the path to forward a message. Thus, this work aims to realize a performance assessment study considering different routing metrics applied to LOADng. The scenarios under study consider different traffic patterns and network sizes. The routing metrics are evaluated considering the packet delivery ratio, average energy spent per bit delivered, average latency, and number of hops. The results reveals that routing metrics used by this protocol may influence (directly) the network performance.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Saeed Ahmad ◽  
Rafi Ullah ◽  
Dumitru Baleanu

AbstractThis research work investigates some theoretical and semi-analytical results for the mathematical model of tuberculosis disease via derivative due to Caputo and Fabrizio. The concerned derivative involves exponential kernel and very recently it has been adapted for various applied problems. The required results are established by using some fixed point approach of Krasnoselskii and Banach. Further, by the use of iterative tools of Adomian decomposition and Laplace, the semi-analytical results are studied. Some graphical results are given with discussion.


2010 ◽  
Vol 426-427 ◽  
pp. 89-92
Author(s):  
Hong Feng Wang ◽  
Dun Wen Zuo ◽  
Ming Min Huang ◽  
Hong Miao

From the laser welding actual process, the welding heat source model of laser welding process was established, that is, superposition heat source. According to the knowledge of thermodynamics, the establishment of a welding process, the mathematical model of temperature distribution of laser welding process was obtained by laser welding heat source. Finally, the finite element simulation of welding temperature distribution was used. The simulated results were compared with the analytical results of mathematical model of temperature field, it was proved consistent between simulated results and analytical results, at the same time it can account for the correctness of the mathematical model of temperature field.


Author(s):  
Abdelhadi Eloudrhiri Hassani ◽  
◽  
Aicha Sahel ◽  
Abdelmajid Badri

The diversity of Internet of Things applications require a flexible routing protocol to cope with several constraints. In this context, the RPL protocol was designed to meet the needs of IoT. RPL relies on an objective function based on specific metrics to fulfill its routing strategy. The single routing metric problem leads generally to non-optimized routes selection. As a consequence, two major issues emerge, mainly the node’s congestion due to the high number of forwarded packets, also the greedy energy consumption by those nodes that conduct to fast batteries draining. In that purpose, Forwarding Traffic Consciousness Objective Function has been proposed, which combines three routing metrics, namely hop count, RSSI and a newly designed Forwarded Traffic Metric (FTM). The proposed method, evaluated using COOJA against ETX and Energy based RPL, showed a packet delivery ratio increase respectively with 2% and 11% in low and high traffics, considerably reduces the power consumption with approximately 47% as well as it achieves a good balance of traffic managed by the relay nodes.


1992 ◽  
Vol 29 (01) ◽  
pp. 129-141 ◽  
Author(s):  
Shey-Huei Sheu

A generalization of the block replacement policy (BRP) is proposed and analysed. Under such a policy, an operating system is preventively replaced at times kT (k = 1, 2, 3, ···), independently of its failure history. At failure an operating system is either replaced by a new or a used one or minimally repaired or remains inactive until the next planned replacement. The cost of the ith minimal repair of the new subsystem at age y depends on the random part C(y) and the deterministic part ci (y). The mathematical model is defined and general analytical results are obtained.


2018 ◽  
Vol 47 (3) ◽  
pp. 29-38 ◽  
Author(s):  
Artur Kierzkowski ◽  
Tomasz Kisiel ◽  
Maria Pawlak

This paper presents a model for the management of passenger service operations at airports by the estimation of a global index of the level of service. This paper presents a new approach to the scheduling of resources required to perform passenger service operations at airports. The approach takes into account the index of level of service as a quantitative indicator that can be associated with airport revenues. Taking this index into account makes it possible to create an operating schedule of desks, adapted to the intensity of checking-in passengers, and, as such, to apply dynamic process management. This offers positive aspects, particularly the possibility of improvement of service quality that directly translates into profits generated by the non-aeronautical activity of airports. When talking about level of service, there can be distinguish other important indicators that are considered very often (eg maximum queuing time, space in square meters). In this model, however, they are considered as secondary. Of course, space in square meters is important when designing a system. Here this system is already built and functioning. The concept of the model is the use of a hybrid method: computer simulation (Monte Carlo simulation) with multiple regression. This paper focuses on the presentation of a mathematical model used to determine the level of service index that provides new functionality in the current simulation model, as presented in the authors’ previous scientific publications. The mathematical model is based on a multiple regression function, taking into account the significance of individual elementary operations of passenger service at an air terminal.


Author(s):  
Md. Amir Khusru Akhtar ◽  
G. Sahoo

A mobile ad hoc network, is an independent network of mobile devices connected by wireless links. Each device in a MANET can move freely in any direction, and will therefore change its links to other devices easily. Each must forward traffic of others, and therefore be called a router. The main challenge in building a MANET is in terms of security. In this paper we are presenting the mathematical model to detect selfish nodes using the probability density function. The proposed model works with existing routing protocol and the nodes that are suspected of having the selfishness are given a Selfishness test. This model formulates this problem with the help of prior probability and continuous Bayes’ theorem.


2021 ◽  
Vol 17 (8) ◽  
pp. 155014772110285
Author(s):  
Mohamed Hadi Habaebi ◽  
Abdullah Ahmed S Basaloom ◽  
Md Rafiqul Islam ◽  
Merrad Yacine ◽  
M Mesri ◽  
...  

Low-power lossy networks performance relies heavily on the wireless node battery status. Furthermore, Routing Protocol for Low-Power and Lossy Network routing protocol was not optimally designed with sustainable energy consumption in mind to suit these networks. Prolonging the lifespan of these networks is of utmost priority. This article introduces a solar energy harvesting module to power energy-constrained network devices and quantifies the effect of using harvested energy on prolonging their network lifetime when Routing Protocol for Low-Power and Lossy Network routing protocol is used. Simulation of the new developed module is conducted in three different scenarios using Contiki Cooja simulator sporting Zolertia Z1 motes. Furthermore, the harvested energy used was fed from a Cooja-based Simulation model of actual PV supercapacitor circuit design. All battery levels were set to 1% of their total capacity for all nodes in the network to speed up observing the energy harvesting effect. The performance evaluation results showed that the network with no-energy harvesting operated for time duration of 4:08:04 time units (i.e. hour:minute:second) with a dramatic decrease in connection between nodes in the network. However, the same network, when using the harvested energy to back up the battery operation, lasted for 6:40:01 in time units with improved connectivity, a total extended network lifetime of 2:31:97-time units. Furthermore, for the Routing Protocol for Low-Power and Lossy Network routing metrics, OF0 outperformed ETX in term of throughput, packet delivery ratio, energy consumption, and network connectivity. Results indicate that the developed harvested energy module fits perfectly for any Cooja-based simulation and mimics actual photovoltaic-based supercapacitor battery. It should also help researchers introduce and quantify accurately new energy consumption-based routing metrics for Routing Protocol for Low-Power and Lossy Network.


1992 ◽  
Vol 29 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Shey-Huei Sheu

A generalization of the block replacement policy (BRP) is proposed and analysed. Under such a policy, an operating system is preventively replaced at times kT (k = 1, 2, 3, ···), independently of its failure history. At failure an operating system is either replaced by a new or a used one or minimally repaired or remains inactive until the next planned replacement. The cost of the ith minimal repair of the new subsystem at age y depends on the random part C(y) and the deterministic part ci(y). The mathematical model is defined and general analytical results are obtained.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


Sign in / Sign up

Export Citation Format

Share Document