scholarly journals Dependence of Adhesion Property of Epoxidized Natural Rubber (ENR 25)/Ethylene-Propylene-Diene Rubber Blend Adhesives Crosslinked by Benzoyl Peroxide

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
B. T. Poh ◽  
Y. Y. Teh

The loop tack, peel strength, and shear strength of crosslinked epoxidized natural rubber (ENR 25)/ethylene-propylene-diene rubber (EPDM) blend adhesives were investigated. Coumarone-indene resin, toluene, and benzoyl peroxide were used as the tackifier, solvent, and crosslinking agent, respectively, throughout the experiment. The adhesive was coated on a polyethylene terephthalate (PET) substrate using a SHEEN hand coater at 60 μm and 120 μm coating thickness. It was cured at 80°C for 30 minutes before testing on a Lloyd adhesion tester operating at testing rates from 10 to 60 cm min−1. Results show that loop tack and peel strength of the ENR 25/EPDM adhesive pass through a maximum value at 2 parts per hundred parts of rubber (phr) of benzoyl peroxide content. This observation is attributed to the increase in crosslinking which enhances the cohesive strength of the adhesive. Further addition of the crosslinking agent decreases the tack and peel strength due to the decrease in wettability of the over-crosslinked adhesive. Shear strength, however, increases steadily with benzoyl peroxide content, an observation which is associated with the steady increase in the cohesive strength. The adhesion properties increase with increasing coating thickness and testing rate.

1999 ◽  
Vol 72 (4) ◽  
pp. 731-740 ◽  
Author(s):  
M. A. L. Verbruggen ◽  
L. van der Does ◽  
J. W. M. Noordermeer ◽  
M. van Duin ◽  
H. J. Manuel

Abstract The thermochemical recycling of natural rubber (NR) and ethylene-propylene-diene rubber (EPDM) vulcanizates with disulfides was studied. NR sulfur vulcanizates were completely plasticized when heated with diphenyldisulfide at 200 °C. It could be concluded that both main chain scission and crosslink scission caused the network breakdown. NR peroxide vulcanizates were less reactive towards disulfide at 200 °C, and only reacted through main chain scission. For EPDM a temperature range of 200–275 °C was studied. In the presence of diphenyldisulfide at 200 °C there was almost no devulcanization of EPDM sulfur vulcanizates, and at 225 and 250 °C there was only slightly more devulcanization. A decrease in crosslink density of 90% was found when 2×10−4 mol diphenyldisulfide/cm3 vulcanizate was added and the EPDM sulfur vulcanizates were heated to 275 °C. EPDM peroxide vulcanizates showed a decrease in crosslink density of ca. 40% under the same conditions. The lower reactivity of EPDM towards disulfide compared with NR is the result of higher crosslink densities, the presence of a higher percentage of more stable monosulfidic crosslinks and the fact that EPDM is less apt to main chain scission relative to NR.


2016 ◽  
Vol 705 ◽  
pp. 45-49 ◽  
Author(s):  
Sarawut Prasertsri ◽  
Pranee Nuinu ◽  
Sansanee Srichan ◽  
Siriwat Radabutra ◽  
Chaiwute Vudjung ◽  
...  

This research aims to investigate the efficiency of polybutadiene-grafted maleic anhydride (PB-g-MAH) as the compatibilizer for ethylene-propylene diene rubber and epoxidized natural rubber (EPDM/ENR) blends. PB-g-MAH was varied from 0-10 parts per hundred parts of rubber (phr), and the cure characteristics, mechanical and dynamic properties of 70/30 EPDM/ENR blends with and without compatibilizer were evaluated. It was found that the minimum torque, maximum torque, scorch and cure times of the blends increased after adding PB-g-MAH, whereas cure rate decreased. The morphology of the blend is improved by the addition of PB-g-MAH in small amounts, owing to an improved compatibility of these rubbers confirmed by dynamic mechanical property. The hardness and oil resistance increased with increasing PB-g-MAH content. Of all blends investigated, the blend compatibilized with 2-4 phr of PB-g-MAH shows the optimum mechanical properties and thermal resistance.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
B. T. Poh ◽  
J. Lamaming ◽  
G. S. Tay

Viscosity, tack and, peel and shear strengths of ethylene-propylene-diene rubber (EPDM)/standard Malaysian rubber (SMR L) blend adhesive were studied using various blend ratios of the two rubbers, ranging from 0 to 100% EPDM. Coumarone-indene resin, toluene, and poly(ethylene terephthalate) (PET) were used as the tackifier, solvent, and coating substrate, respectively. The tackifier content was fixed at 40 parts per hundred parts of rubber (phr). A SHEEN hand coater was used to coat the adhesive on PET film at four coating thicknesses, that is, 30, 60, 90, and 120 µm. The viscosity and adhesion properties were determined by a Brookfield viscometer and a Lloyd Adhesion Tester, respectively. Results show that the viscosity, loop tacks and peel strength of blend adhesives decrease gradually with increasing % EPDM. This observation is attributed to dilution effect and lowering in wettability and compatibility. Shear strength, however, passes through a maximum at 20–40% EPDM blend ratio, an observation which is ascribed to culmination of cohesive strength at the optimum EPDM blend ratio. Increasing coating thickness increases the adhesion properties in all blend ratios in this study.


Sign in / Sign up

Export Citation Format

Share Document